首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune myasthenia gravis (EAMG), a model for human myasthenia (MG), is routinely induced in susceptible rat strains by a single immunization with Torpedo acetylcholine receptor (TAChR). TAChR immunization induces anti-AChR Abs that cross-react with self AChR, activate the complement cascade, and promote degradation of the postsynaptic membrane of the neuromuscular junction. In parallel, TAChR-specific T cells are induced, and their specific immunodominant epitope has been mapped to the sequence 97-116 of the AChR alpha subunit. A proliferative T cell response against the corresponding rat sequence (R97-116) was also found in TAChR-immunized rats. To test whether the rat (self) sequence can be pathogenic, we immunized Lewis rats with R97-116 or T97-116 peptides and evaluated clinical, neurophysiological, and immunological parameters. Clinical signs of the disease were noted only in R97-116-immunized animals and were confirmed by electrophysiological signs of impaired neuromuscular transmission. All animals produced Abs against the immunizing peptide, but anti-rat AChR Abs were observed only in animals immunized with the rat peptide. These findings suggested that EAMG in rats can be induced by a single peptide of the self AChR, that this sequence is recognized by T cells and Abs, and that breakdown of tolerance to a self epitope might be an initiating event in the pathogenesis of rat EAMG and MG.  相似文献   

2.
Myasthenia gravis (MG) is a T cell-dependent, Ab-mediated autoimmune disease. Ab against muscle acetylcholine receptor (AChR) cause the muscular weakness that characterizes MG and its animal model, experimental MG (EMG). EMG is induced in C57BL6 (B6) mice by three injections of Torpedo AChR (TAChR) in adjuvant. B6 mice develop anti-TAChR Ab that cross-react with mouse muscle AChR, but their CD4+ T cells do not cross-react with mouse AChR sequences. Moreover, murine EMG is not self-maintaining as is human MG, and it has limited duration. Several studies suggest that IL-4 has a protecting function in EMG. Here we show that B6 mice genetically deficient in IL-4 (IL-4-/-) develop long-lasting muscle weakness after a single immunization with TAChR. They develop chronic self-reactive Ab, and their CD4+ T cells respond not only to the TAChR and TAChR subunit peptides, but also to several mouse AChR subunit peptides. These results suggest that in B6 mice, regulatory mechanisms that involve IL-4 contribute to preventing the development of a chronic Ab-mediated autoimmune response to the AChR.  相似文献   

3.
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.  相似文献   

4.
The immunological structure of the acetylcholine receptor (AChR) from the electric organ of Torpedo californica was studied using a large number of monoclonal antibodies which were initially selected for their abilities to bind to intact AChRs. The monoclonal antibodies were tested for their ability to bind to denatured AChR subunits labeled with 125I. Antibodies derived from rats immunized with individual denatured subunits or a mixture of subunits of Torpedo AChR reacted well in the assay. A much smaller proportion of antibodies derived from rats immunized with native Torpedo AChR or native AChR from Electrophorus electricus electric organ, bovine muscle, or human muscle reacted with denatured subunits of Torpedo AChR. Many monoclonal antibodies reacted with more than one subunit, but they always reacted best with the subunit used for immunization. Those monoclonal antibodies that bound to intact subunits were mapped more precisely by their ability to bind characteristic fragments of each subunit generated by proteolysis with Staphylococcal V8 protease. These fragments were analyzed by SDS polyacrylamide gel electrophoresis, and monoclonal antibodies that precipitated the same fragment pattern were placed in groups. By this method, we define a minimum of 28 determinants on Torpedo AChR.  相似文献   

5.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent diseases mediated by antibodies against acetylcholine receptor (AChR) on skeletal muscle. Most of the antibodies are directed toward conformation-dependent epitopes on the AChR, whereas T cells recognize denatured AChR. In search of T cell epitopes in EAMG, we tested 24 synthetic peptides covering 62% of the alpha-subunit sequence of Torpedo californica electric organ AChR in the T cell proliferation assay with lymph node cells from rats immunized with AChR. In Lewis rats, 2 of these peptides, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90, strongly stimulated T cells and, of these, [Tyr 100]alpha 100-116 was much more potent; 4 other peptides were weakly mitogenic and 18 were ineffective. None of the 24 synthetic peptides alone stimulated anti-AChR production and, when added to cultures along with AChR, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90 suppressed antibody production. Of twelve cloned T cell lines specific to AChR, 4 responded to [Tyr 100]alpha 100-116, indicating the importance of the epitope in alpha 101-116 in Lewis rats. In three other strains of rats whose responses to AChR and its subunits were similar to those in the Lewis rat, neither [Tyr 100]alpha 100-116 nor [Gly 89, Tyr 90]alpha 73-90 was stimulatory. Instead, completely different sets of peptides stimulated their T cells. When peptides were used as immunogens, each strain (except Lewis rats) responded only to the peptides that stimulated AChR-immune T cells from the same strain. Genetically restricted T cell recognition of AChR peptides in rats suggests that T cells from MG patients with different major histocompatibility haplotypes may recognize different AChR peptides.  相似文献   

6.
Myasthenia gravis (MG) is caused by autoantibodies against the nicotinic acetylcholine receptor (AChR) of the neuromuscular junction. The anti-AChR antibodies are heterogeneous. However, a small region on the extracellular part of the AChR alpha subunit, called the main immunogenic region (MIR), seems to be the major target of the anti-AChR antibodies, but not of the specific T-cells, in experimental animals and possibly in MG patients. The major loop of the overlapping epitopes for all testable anti-MIR monoclonal antibodies (MAbs) was localized within residues 67-76 (WNPADYGGIK for Torpedo and WNPDDYGGVK for human AChR) of the alpha subunit. The N-terminal half of alpha 67-76 is the most critical, Asn68 and Asp71 being indispensable for binding. Yet anti-MIR antibodies are functionally and structurally quite heterogeneous. Anti-MIR MAbs do not affect channel gating, but they are very potent in mediating acceleration of AChR degradation (antigenic modulation) in cell cultures and in transferring experimental MG in animals. Fab fragments of anti-MIR MAbs bound to the AChR prevent the majority of the MG patients' antibodies from binding to and causing loss of the AChR. Whether this inhibition means that most MG antibodies bind on the same small region or is a result of broad steric/allosteric effects is under current investigation.  相似文献   

7.
Autoantigen administration via nasal mucosal tissue can induce systemic tolerance more effectively than oral administration in a number of experimental autoimmune diseases, including Ab-mediated experimental autoimmune myasthenia gravis, a murine model of myasthenia gravis. The mechanisms underlying nasal tolerance induction are not clear. In this study, we show that nasal administration of acetylcholine receptor (AChR) in C57BL/6 mice, before immunizations with AChR in adjuvant, results in delayed onset and reduced muscle weakness compared with control mice. The delayed onset and reduced muscle weakness were associated with decreased AChR-specific lymphocyte proliferation and decreased levels of anti-AChR Abs of the IgG2a and IgG2b isotypes in serum. The clinical and immunological changes in the AChR-pretreated C57BL/6 wild-type (wt) mice were comparable with those observed in AChR-pretreated CD8-/- mice, indicating that CD8+ T cells were not required for the generation of nasal tolerance. AChR-pretreated wt and CD8-/- mice showed augmented TGF-beta and reduced IFN-gamma responses, whereas levels of IL-4 were unaltered. Splenocytes from AChR-pretreated wt and CD8-/- mice, but not from CD4-/- mice, suppressed AChR-specific lymphocyte proliferation. This suppression could be blocked by Abs against TGF-beta. Thus, our results demonstrate that the suppression induced in the present model is independent of CD8+ T cells and suggest the involvement of Ag-specific CD4+ Th3 cells producing TGF-beta.  相似文献   

8.
Pixantrone (BBR2778) (PIX) and mitoxantrone share the same mechanism of action because both drugs act as DNA intercalants and inhibitors of topoisomerase II. PIX is an interesting candidate immunosuppressant for the treatment of autoimmune diseases because of its reduced cardiotoxicity compared with mitoxantrone. The clinical response to conventional immunosuppressive treatments is poor in some patients affected by myasthenia gravis (MG), and new but well-tolerated drugs are needed for treatment-resistant MG. PIX was tested in vitro on rat T cell lines specific for the immunodominant peptide 97-116 derived from rat acetylcholine receptor (AChR), and showed strong antiproliferative activity in the nanomolar range. We demonstrate in this study that PIX administration reduced the severity of experimental autoimmune MG in Lewis rats. Biological and immunological analysis confirmed the effect of PIX, compared with vehicle-treated as well as mitoxantrone-treated experimental autoimmune MG rats. Anti-rat AChR Abs were significantly reduced in PIX-treated rats, and AChR content in muscles were found increased. Torpedo AChR-induced T cell proliferation tests were found reduced in both in vitro and ex vivo experiments. The effectiveness and the reduced cardiotoxicity make PIX a promising immunosuppressant agent suitable for clinical investigation in MG, although additional experiments are needed to confirm its safety profile in prolonged treatments.  相似文献   

9.
Mice expressing the Torpedo acetylcholine receptor alpha-chain as a neo-self-Ag exhibit a reduced frequency of T cells responding to the immunodominant epitope Talpha146-162 indicating a degree of tolerance. We characterized tolerance induction in these animals by analyzing the residual Talpha146-162-responsive T cell population and comparing it to that of nontransgenic littermates. Using CD4(high) sorting, we isolated the vast majority of Ag-reactive T cells from both strains of mice. Quantitative studies of the CD4(high) populations in transgenic mice following immunization with Talpha146-162 revealed a diminished expansion of cells expressing the canonical TCRBV6 but not other TCRBV gene segments when compared with nontransgenic littermates. In addition, CD4(high) cells from transgenic mice were functionally hyporesponsive to Talpha146-162 in terms of proliferation and cytokine secretion regardless of TCRBV gene segment use. TCR sequence analysis of transgenic Vbeta6(+)CD4(high) cells revealed a reduced frequency of cells expressing a conserved motif within the TCRbeta CDR3. Thus, the canonical Talpha146-162 responsive, Vbeta6(+) population demonstrates both quantitative and qualitative deficits that correlate with an altered TCR repertoire whereas the non-Vbeta6 population in transgenic mice exhibits only a reduction in peptide responsiveness, a qualitative defect. These data demonstrate that discrete autoreactive T cell populations with identical peptide/MHC specificity in Torpedo acetylcholine receptor-alpha-transgenic animals bear distinct tolerance imprints.  相似文献   

10.
11.
12.
Tryptic digestion of acetylcholine receptor (AChR) from Torpedo californica did not change the pharmacological specificity and the pathological myasthenic acitivity of the receptor molecule. The product obtained after tryptic digestion was repurified by affinity chromatography on a toxin-Sepharose resin and was designated T-AChR. T-AChR has a sedimentation coefficient of 8.0S and in SDS acrylamide gel electrophoresis shows one major band with a molecular weight of 27,000. Immunological studies reveal that T-AChR binds to anti-AChR antibodies directed only against conformational antigenic determinants.  相似文献   

13.
When the four subunits of the Torpedo californica nicotinic acetylcholine receptor (AChR) are expressed in mammalian fibroblasts, they properly assembly into alpha 2 beta gamma delta pentamers only at temperatures lower than 37 degrees C (Claudio, T., W. N. Green, D. S. Hartman, D. Hayden, H. L. Paulson, F. J. Sigworth, S. M. Sine, and A. Swedlund. 1987. Science (Wash. DC). 238:1688-1694). Experiments here with rat L6 myoblast cell lines indicate that this temperature sensitivity is not specific to fibroblasts, but is intrinsic to Torpedo subunits. A clonal isolate of L6 cells cotransfected with the four Torpedo subunit cDNAs synthesizes the exogenous AChR subunits at 37 degrees and 26 degrees C, but expresses Torpedo AChR complexes only at the lower temperature. When Torpedo alpha alone is expressed in L6 myotubes, hybrid AChRs are formed, again only at temperatures below 37 degrees C. These hybrid AChRs can contain either two Torpedo alpha subunits or one each of rat and Torpedo alpha, proving that the two alpha subunits in an AChR pentamer need not derive from the same polysome. Further analysis of hybrid and all-Torpedo AChR established that there is no internally sequestered pool of AChR at the nonpermissive temperature, and that the AChR, once formed, is thermostable. Two lines of experimentation with alpha subunits expressed in fibroblasts indicate that alpha polypeptides exhibit different conformations at 26 degrees and 37 degrees C, favoring the hypothesis that the temperature-sensitive step occurs before assembly and reflects, at least in part, misfolding of subunits: at 37 degrees C, there is a reduction in the fraction of alpha subunits that (a) bind the AChR antagonist alpha-bungarotoxin with high affinity; and (b) bind a monoclonal antibody that recognizes correctly folded and/or assembled alpha subunit.  相似文献   

14.
We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.  相似文献   

15.
We have recently described an algorithm to design, among others, peptides with complementarity contour to autoimmune epitopes. Immunization with one such peptide resulted in a monoclonal antibody (mAb), termed CTCR8, that specifically recognized Vbeta15 containing TCR on acetylcholine receptor (AChR) alpha-chain residue 100-116-specific T cells. CTCR8 was found to label the cell surface of AChR100-116-specific T cell lines and clones, immunoprecipitate the TCR from such cells, and block their proliferative responses to AChRalpha100-116. In the present report, we have found that there is a marked reduction in IFN-gamma and no effect on IL-10 production in a CTCR8-treated AChRalpha100-116-specific T cell line. Interestingly, when AChR100-116-primed, primary T cells were stimulated with peptide and treated with CTCR8, there was once again inhibition of IFN-gamma but also marked stimulation of IL-10 production. The change in the Th1/Th2 cytokine profile was paralleled by a reduction in AChR-specific IgG2a and IgM with no effect on IgG1. Remarkably, the most profoundly inhibited Ab population was that which causes experimental autoimmune myasthenia gravis (EAMG) by reaction with the main immunogenic region (alpha61-76) of the AChR. Based on these results, CTCR8 was tested for prophylactic and therapeutic effects in EAMG. EAMG induced by immunization with purified native Torpedo AChR was both inhibited and reversed by CTCR8. These findings suggest a means to produce therapeutic mAb for the treatment of autoimmune diseases.  相似文献   

16.
Myasthenia gravis (MG) and its animal model, experimental autoimmune (EA) MG, are caused by T cell-dependent autoantibodies that react with the nicotinic acetylcholine receptor (AChR) on muscle and interfere with neuromuscular transmission. Thus, selective inactivation of CD4(+) AChR-specific T helper cells should lower AChR Ab levels and ameliorate disease. In the Lewis rat model of EAMG, alpha chain residues 100-116 of the AChR represent the dominant T cell epitope, which is important in helping Ab responses to this autoantigen. In the present report, we have applied a new design technique that requires no knowledge of Ag receptor sequences on errant T cells in order to develop a synthetic peptide vaccine against T cells reactive with the aforementioned T cell epitope. Immunization with the peptide 1) induced polyclonal and monoclonal Ab, which inhibited AChR 100-116 stimulation of AChR-sensitized lymphocytes and recognized Vbeta15 containing T cell receptors on AChR 100-116-specific T cell lines and clones; 2) lowered AChR Ab levels; 3) reduced the loss of muscle AChR; and 4) lessened the incidence and severity of EAMG. These findings suggest a new strategy for the functional abrogation of epitope-specific T cells that could have potential application to human autoimmune diseases.  相似文献   

17.
Several studies have suggested that the autoantibodies (autoAbs) against muscle acetylcholine receptor (AChR) of myasthenia gravis (MG) patients are the main pathogenic factor in MG; however, this belief has not yet been confirmed with direct observations. Although animals immunized with AChR or injected with anti-AChR monoclonal Abs, or with crude human MG Ig fractions exhibit MG symptoms, the pathogenic role of isolated anti-AChR autoAbs, and, more importantly, the absence of pathogenic factor(s) in the autoAb-depleted MG sera has not yet been shown by in vivo studies. Using recombinant extracellular domains of the human AChR α and β subunits, we have isolated autoAbs from the sera of four MG patients. The ability of these isolated anti-subunit Abs and of the Ab-depleted sera to passively transfer experimental autoimmune MG in Lewis rats was investigated. We found that the isolated anti-subunit Abs were at least as efficient as the corresponding whole sera or whole Ig in causing experimental MG. Abs to both α- and β-subunit were pathogenic although the anti-α-subunit were much more efficient than the anti-β-subunit ones. Interestingly, the autoAb-depleted sera were free of pathogenic activity. The later suggests that the myasthenogenic potency of the studied anti-AChR MG sera is totally due to their anti-AChR autoAbs, and therefore selective elimination of the anti-AChR autoAbs from MG patients may be an efficient therapy for MG.  相似文献   

18.
Tumor-associated proteins can act as effective immunotherapeutic targets. Immunization with tumor TCR protein conjugated to the immunogenic protein keyhole limpet hemocyanin (KLH) protects mice from tumor challenge with the murine T cell lymphoma C6VL. The immune mechanisms responsible for this tumor protection are of interest for designing more effective vaccine strategies. Previous studies using depletion experiments had suggested a CD8-mediated component of protection induced by TCR-KLH vaccines. In this study we used CD8alpha knockout, micro MT, and FcgammaR knockout mice to investigate the relative roles of CD8+ T cells and Ab in protective immunity induced by TCR-KLH immunization. We found that CD8+ T cells are not required for tumor protection, although they may contribute to protection. Vaccine-induced Abs are sufficient to mediate protection against this murine T cell lymphoma through an FcR-dependent mechanism. This was confirmed with Ab transfers, which protect challenged mice. Additionally, recombinase-activating gene 1(-/-) splenocytes can mediate Ab-dependent cellular cytotoxicity against this tumor in the presence of bound anti-TCR Abs. IFN-gamma knockout mice demonstrated a requirement for IFN-gamma, probably via generation of IgG2c Abs, in vaccine-induced tumor protection. IFN-gamma knockout mice were not protected by immunization and had a severe impairment in IgG2c Ab production in response to immunization. Although mock-depleted anti-TCR Abs could transfer tumor protection, IgG2c-deficient anti-TCR Abs were unable to transfer tumor protection to wild-type mice. These results suggest that TCR-KLH vaccine-induced tumor protection in the C6VL system is primarily attributable to the induction of IgG2c Abs and humoral immunity.  相似文献   

19.
Assembly of nicotinic acetylcholine receptor (AChR) subunits was investigated using mouse fibroblast cell lines stably expressing either Torpedo (All-11) or mouse (AM-4) alpha, beta, gamma, and delta AChR subunits. Both cell lines produce fully functional cell surface AChRs. We find that two independent treatments, lower temperature and increased intracellular cAMP can increase AChR expression by increasing the efficiency of subunit assembly. Previously, we showed that the rate of degradation of individual subunits was decreased as the temperature was lowered and that Torpedo AChR expression was acutely temperature sensitive, requiring temperatures lower than 37 degrees C. We find that Torpedo AChR assembly efficiency increases 56-fold as the temperature is decreased from 37 to 20 degrees C. To determine how much of this is a temperature effect on degradation, mouse AChR assembly efficiencies were determined and found to be only approximately fourfold more efficient at 20 than at 37 degrees C. With reduced temperatures, we can achieve assembly efficiencies of Torpedo AChR in fibroblasts of 20-35%. Mouse AChR in muscle cells is also approximately 30% and we obtain approximately 30% assembly efficiency of mouse AChR in fibroblasts (with reduced temperatures, this value approaches 100%). Forskolin, an agent which increases intracellular cAMP levels, increased subunit assembly efficiencies twofold with a corresponding increase in cell surface AChR. Pulse-chase experiments and immunofluorescence microscopy indicate that oligomer assembly occurs in the ER and that AChR oligomers remain in the ER until released to the cell surface. Once released, AChRs move rapidly through the Golgi membrane to the plasma membrane. Forskolin does not alter the intracellular distribution of AChR. Our results indicate that cell surface expression of AChR can be regulated at the level of subunit assembly and suggest a mechanism for the cAMP-induced increase in AChR expression.  相似文献   

20.
We explored T cell responses to the self class II MHC (I-Ag7) beta-chain-derived peptides in diabetic and prediabetic nonobese diabetic (NOD) mice. We found that one of these immunodominant epitopes of the beta-chain of I-Ag7 molecule, peptide 54-76, could regulate autoimmunity leading to diabetes in NOD mice. T cells from prediabetic young NOD mice do not respond to the peptide 54-76, but T cells from diabetic NOD mice proliferated in response to this peptide. T cells from older nondiabetic mice or mice protected from diabetes do not respond to this peptide, suggesting a role for peptide 54-76-specific T cells in pathogenesis of diabetes. We show that this peptide is naturally processed and presented by the NOD APCs to self T cells. However, the peptide-specific T cells generated after immunization of young mice regulate autoimmunity in NOD mice by blocking the diabetogenic cells in adoptive transfer experiments. The NOD mice immunized with this peptide are protected from both spontaneous and cyclophosphamide-induced insulin-dependent diabetes mellitus. Immunization of young NOD mice with this peptide elicited T cell proliferation and production of Th2-type cytokines. In addition, immunization with this peptide induced peptide-specific Abs of IgG1 isotype that recognized native I-Ag7 molecule on the cell surface and inhibited the T cell proliferative responses. These results suggest that I-Abetag7(54-76) peptide-reactive T cells are involved in the pathogenesis of diabetes. However, immunization with this peptide at young age induces regulatory cells and the peptide-specific Abs that can modulate autoimmunity in NOD mice and prevent spontaneous and induced diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号