首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of GM1 ganglioside in developing mouse cerebellum was monitored by indirect immunofluorescent detection of choleragenoid receptors. In frozen sections of cerebellum from mice 5 to 10 days old, fluorescence is observed on granule cells in the inner rows of the external granular layer, in the growing molecular layer, the Purkinje cell layer, and the internal granular layer. In sections of adult mice, fluorescence is restricted to the bodies of Purkinje and internal granule neurons. The percentage of fluorescent dissociated or cultured cerebellar cells increases with the postnatal age of the mouse or the duration of time in vitro. No fluorescence is observed in the absence of choleragenoid or if the test material is extracted with chloroform:methanol. To determine whether the expression of surface GM1 ganglioside in culture is a reflection of a developmental program, mice are injected at particular times with [3H]thymidine and cerebellar cultures processed for simultaneous autoradiography and immunofluorescence. Granule cells from 8-day-old mice having cholera toxin receptors at 20 hr in vitro are a distinct population born 1 day or earlier prior to sacrifice. Cells synthesizing DNA on the day of sacrifice are not fluorescent at 20 hr in vitro. This observation correlates well with immunohistological results showing a lack of fluorescence in the outer proliferative rows of the external granular layer. Therefore GM1 ganglioside is not present on granule cell precursors but is expressed at some time after the cells become postmitotic. GM1 ganglioside is detected on growing parallel fibers in situ and neurites in vitro but not on adult axons, suggesting differential localization at a later stage of development.  相似文献   

2.
3.
The proliferative activity of undifferentiated brain cells from either 5- or 7-day-old chick embryos has been investigated by labeling the cells with a 24-hr pulse label of [14C]- or [3H]-thymidine during the early stages (0 to 8 days) of culture. As soon as the neurons and the glial cells could be distinguished (after 4, 7, or 14 days of culture), the cultures were prepared and submitted to the activated autoradiographic method. In some experiments a continuous labeling was applied up to 2 weeks. During the first 48 hr of culture, and for both embryonic ages studied, nearly all neuronal precursors were able to proliferate. After 4 days in culture for the 7-day-old embryo and 7 days in culture for the 5-day-old embryo most of the neuronal cells stopped dividing. These two culture periods correspond to the stage of the embryonic life when the end of the mitotic activity of neuroblasts occurs in vivo. Thus, the proliferation and development in culture of most neuroblasts was found to parallel the in vivo evolution of these cells. Some neuroblasts, however, continued to multiply in vitro for a longer period of time. The astroblasts precursors were found to multiply actively from the 3rd day on, or immediately from time zero, for the 5- and 7-day-old chick embryos, respectively. These observations seem to indicate that the astroblast precursors are in a latent stage until they have reached Day 7. Thereafter, they proliferate actively during the first week of culture and therefore remain in an embryonic stage during this culture period. This fact corresponds also to the in vivo situation, where the glial cell precursors multiply actively around the same time period.  相似文献   

4.
The rate of cerebellar granule cell migration is altered by neonatal hypo- and hyperthyroidism in a manner similar to previously reported effects on the growth of granule cell axons, the parallel fibers, suggesting that the two processes may be intimately linked. Altered rates of granule cell acquisition in these experimental animals reflect changes in germinal cell proliferation in the external granular layer (EGL), movement of postmitotic cells within the EGL, as well as the rate and time course of granule cell migration. Results of this study support the hypothesis that granule cells migrate to the internal granular layer by translocation of the cell body through the descending portion of the growing parallel fiber, rather than by amoeboid-like migration of the perikaryon trailing the elongating parallel fiber behind.  相似文献   

5.
Labelling index, S-phase duration and cell-cycle time of proliferating brain cells from 6-day-old chick embryos in culture were investigated autoradiographically after labelling with [3H]- and/or [14C]-thymidine. the dissociated cells were cultured in the absence or in the presence of brain extract from 8-day-old chick embryos. Cultures contained essentially two cell types, which could be easily distinguished by the size of their nuclei: small nuclei identified as belonging to precursor cells of neurons and large nuclei corresponding to astroglial cells. the labelling index of astroglial cells (16.4%) was about 2 times higher than that of the neuronal cells (9.9%). Under the influence of brain extract the labelling index of neuroblasts was nearly doubled while that of the astroglial cells remained nearly unchanged. From double-labelling experiments with [3H]- and [14C]-thymidine, the same S-phase duration of about 7 hr was found for both cell types cultured with or without brain extract. A cell-cycle duration of 39 hr for neuronal and of 29 hr for astroglial cells was found. the cycle times remained constant under the influence of brain extract. From the measured data mentioned above, a growth fraction of 50% (neuroblasts) and 68% (astroglial cells) was calculated in control cultures without brain extract. After addition of brain extract, the growth fraction increased for both cell types (neuroblasts: 92%; astroglial cells: 80%). the results demonstrate that more cells proliferate in the presence of brain extract, but the durations of the S-phase and the cell cycle remain unchanged.  相似文献   

6.
7.
The formation of tissues is essential for metazoan development. During Caenorhabditis elegans embryogenesis, ventral epidermal cells migrate to encase the ventral surface of the embryo in a layer of epidermis by a process known as ventral enclosure. This process is regulated by guidance cues secreted by the underlying neuroblasts. However, since the cues and their receptors are differentially expressed in multiple cell types, the role of the neuroblasts in ventral enclosure is not fully understood. Furthermore, although F-actin is required for epidermal cell migration, it is not known if nonmuscle myosin is also required. Anillin (ANI-1) is an actin and myosin-binding protein that coordinates actin–myosin contractility in the early embryo. Here, we show that ANI-1 localizes to the cleavage furrows of dividing neuroblasts during mid-embryogenesis and is required for their division. Embryos depleted of ani-1 display a range of ventral enclosure phenotypes, where ventral epidermal cells migrate with similar speeds to control embryos, but contralateral neighbors often fail to meet and are misaligned. The ventral enclosure phenotypes in ani-1 RNAi embryos suggest that the position or shape of neuroblasts is important for directing ventral epidermal cell migration, although does not rule out an autonomous requirement for ani-1 in the epidermal cells. Furthermore, we show that rho-1 and other regulators of nonmuscle myosin activity are required for ventral epidermal cell migration. Interestingly, altering nonmuscle myosin contractility alleviates or strengthens ani-1's ventral enclosure phenotypes. Our findings suggest that ventral enclosure is a complex process that likely relies on inputs from multiple tissues.  相似文献   

8.
9.
Light- and electron-microscopie studies were performed in glia cells and neurons of the cerebellum of 12-day-old rats until 48 following intraperitoneal application of 8 mg/kg 6-aminonicotinamide (6-AN), an antimetabolite of nicotinamide that inhibits the oxidative pentose-phosphate pathway. Particularly sensitive were the neuroblasts of the external granular layer. The migration of the neuroblasts was clearly reduced. Parts of the internal granular layer were damaged, while the Purkinje cells and astrocytes remained unchanged. Oligodendrocytes and astrocytes showed vacuolar degeneration. Swelling of the myelin sheath occurred in the form of a status spongiosus. 48 h after 6-AN injection some mitoses and phagocytic cells were found in the internal granular layer.  相似文献   

10.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

11.
Summary During the development of the chick embryo from the 6th to the 15th day of incubation, the cell types in cerebral hemispheres undergo differentiation. During this period the indifferent cells of the germinal layer migrate away from the neural cavity to form the mantle layer. These cells differentiate into neuroblasts and spongioblasts.RNA biosynthesis is very active in the cells of the germmal layer of the young embryos. From the 10th day on, it decreased becoming very weak in the 15-days old embryos. The RNA is stored in the nucleus and its passage to cytoplasm is very slow.In 6 and 8-days old embryos the RNA biosynthesis in the mantle layer is not very active but increases during embryonic development as the germinal cells differentiate. The biosynthesis is always more intense in the neuroblasts than in the spongioblasts. The RNA is stored in the nucleus and its passage to cytoplasm is slow in the young neuroblasts and the spongioblasts. The formation of Nissl bodies in neuroblasts and the differentiation of neuroblasts into neurons, which corresponds to the development of axons and dendrites, both are accompanied by an activation of the RNA passage from the nucleus into the cytoplasm.With the technical assistance of A. Brossard.  相似文献   

12.
13.
Cell–cell and cell–matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3−/−) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3−/− mice and suggest an involvement of MMP-3 in mouse cerebellar development.  相似文献   

14.
By immunizing mice with cells from embryonic chick motoneuron cultures, an antiserum was produced which recognizes an antigen(s) restricted to cell surfaces of most, or all, neurons. With the use of this antiserum, the appearance of neuron-specific antigenicity in cells of the embryonic spinal cord was examined by indirect immunofluorescence microscopy. The antigen or set of antigens reacting with this antiserum was first detectable in the neural tube of chick embryos at stage 15–16 (V. Hamburger and H. L. Hamilton, 1951, J. Morphol.88, 49–92). In addition to the neuroblasts located in the mantle layer, some mitotic cells as well as some spindle-shaped cells in the germinal layer were antigen positive. Immunofluorescence microscopy combined with autoradiography revealed that none of the antigen-positive cells could be labeled with [3H]thymidine; thus they do not synthesize DNA, and none of the cells in the DNA synthetic phase expressed the antigen(s). As the neuroblasts do not synthesize DNA after they have differentiated from the germinal cells, we believe that the antigen-positive cells are differentiated elements and that the differentiation of membranes specific for neurons begins already before or during the terminal mitosis of cells which will be defined as neuroblasts.  相似文献   

15.
Previous studies have demonstrated that macrophage-like cells transporting antigen, e.g., human serum albumin (HSA) appear in thoracic duct lymph and blood shortly after antigen injection. The in vivo migration of these antigen-laden (Ag-L) cells from the blood stream was examined systematically by transferring Ag-L cells bearing 125I-labelled HSA into syngeneic rats. There was no evidence autoradiographically that Ag-L cells migrated into lymph nodes, but the localization in the spleen followed a defined pattern: within the first hours after transfer, a majority of radiolabelled cells were identified in the marginal zone; by 3 hr and up to 4 days later, 60–80% of labelled cells were resident in the red pulp; Ag-L cells failed to migrate into the white pulp in significant numbers. Ag-L cells which had localized to the spleen, when examined 3 and 18 hr after transfer using combined autoradiography and immunoperoxidase staining, did not express la determinants in situ. The ability of Ag-L cells to stimulate an adoptive secondary response was tested in splenectomized, irradiated recipients receiving HSA-specific memory cells. Removal of the spleen before transfer severely reduced the antibody response evoked by Ag-L cells transporting HSA, thus indicating the functional importance of antigen transport to the spleen. Since Ag-L cell migration was primarily into the red pulp, we have considered whether the red pulp may provide a relevant microenvironment for lymphocyte/ antigen interaction.  相似文献   

16.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.  相似文献   

17.
Drosophila virilis wing disks cultured in vitro in Schneider medium and then transplanted into mature larvae for metamorphosis revealed a shift from successful development of the thoracic area accompanied by poor development of the wing area, to the opposite condition when the period in vitro was increased to 7 days. Cultures in adult hosts for the same length of time maintained the former condition. Labelling experiments with H3-thymidine revealed a substantial decrease in uptake during the first 24 hr in vitro followed by a slight increase after 4 days.  相似文献   

18.
Metazoan cell movement has been studied extensively in vitro, but cell migration in living animals is much less well understood. In this report, we have studied the Caenorhabditis elegans Q neuroblast lineage during larval development, developing live animal imaging methods for following neuroblast migration with single cell resolution. We find that each of the Q descendants migrates at different speeds and for distinct distances. By quantitative green fluorescent protein imaging, we find that Q descendants that migrate faster and longer than their sisters up-regulate protein levels of MIG-2, a Rho family guanosine triphosphatase, and/or down-regulate INA-1, an integrin α subunit, during migration. We also show that Q neuroblasts bearing mutations in either MIG-2 or INA-1 migrate at reduced speeds. The migration defect of the mig-2 mutants, but not ina-1, appears to result from a lack of persistent polarization in the direction of cell migration. Thus, MIG-2 and INA-1 function distinctly to control Q neuroblast migration in living C. elegans.  相似文献   

19.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.  相似文献   

20.
The four folds of the mantle and the periostracal lamina of R. philippinarum were studied using light, transmission and scanning electron microscopy to determine the histochemical and ultrastructural relationship existing between the mantle and the shell edge. The different cells lining the four folds, and in particular those of the periostracal groove, are described in relation to their secretions. The initial pellicle of the periostracum arises in the intercellular space between the basal cell and the first intermediate cell. In front of the third cell of the inner surface of the outer fold, the periostracal lamina is composed of two major layers; an outer electron-dense layer or periostracum and an inner electron-lucent fibrous layer or fibrous matrix. The role and the fate of these two layers differ; the outer layer will recover the external surface of the shell and the inner layer will contribute to shell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号