首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the pH dependence of l-arabinose isomerase (AI) activity and stability, we compared homologous AIs with their chimeras. This study demonstrated that an ionizable amino acid near the catalytic site determines the optimal pH (pHopt) for activity, whereas the N-terminal surface R residues play an important role in determining the pHopt for stability.  相似文献   

2.
pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R2 = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (<5.5) waters, asymmetric tolerance curves were found. In low-pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R2 = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH.  相似文献   

3.
Locating sites of amino acids related to enzyme properties is still a challenge for rational engineering. Based on the strategy that sites of amino acids can be located by dipeptides, a computational model was made for pH-related dipeptides of xylanase. According to the dipeptide model, pH of a thermostable xylanase B from Thermotoga maritima was rationally designed by locating pH-related amino acids in its sequence and structure. In agreement with expectation, the optimum pH (pHopt) of the xylanase was improved by five amino acids substitutions: E70Q, E74Q, E77Q, G85Q and T87Q. In parallel assay reactions, at 90 °C, its pHopt increases to 5.5 from 5.1, and its whole pH profile also shifts 0.5 units towards alkaline area; at 80 °C, the relative activity decreases very little over a wide pH range from 5.25 to 6.0. This result demonstrated that the bioinformatics model is useful for pH rational design and engineering of xylanase, a model molecular of a large family of ~10% proteins with (β/α)8-barrel structure.  相似文献   

4.
The effect of carbonate concentration, pH of the medium, and illumination intensity on the major physiological characteristics (growth rate and the intensities of CO2 assimilation and oxygen photoproduction) of the natronophilic cyanobacterium Euhalothece sp. Z-M001 have been studied. It was established that the investigated microorganism has at least two transport systems (TS) for CO2, which differ in both the pH optimum and substrate affinity: TS I has a pHopt 9.4–9.5 and a K S 0.5 of 13–17 mM, whereas TS II has a pHopt 9.9–10.2 and a K S 0.5 of 600–800 mM. The substrate affinity of these transport systems is several orders of magnitude lower than the substrate affinity of the transport systems of freshwater cyanobacteria. It is suggested that they are unique for extremely alkaliphilic cyanobacteria and reflect their adaptation to the seasonal cycles of the lake hydrochemistry.  相似文献   

5.
pH-Dependence of hydrolytic activity of trypsin has been studied in cationic reverse micellar system of cetyltrimethylammonium bromide (CTAB) in (50% v/v) chloroform/isooctane using a positively charged substrate Nα-benzoyl-L-arginine ethyl ester (BAEE). The pH of the medium was varied from 4.0 to 8.5 with addition of 0.025 M citrate-phosphate buffer containing 1 mM CaCl2. Optimum pH for maximum enzyme activity, pHopt in reverse micelles is found to be similar to that observed in bulk aqueous solution (8.0–8.5). However, changes in activity of trypsin (kcat) as a function of water content W0 (W0 = [H2O]/[CTAB]) in reverse micelles are found to be pH dependent. At low pH (4.0) and low water content (W0 = 5) the enzyme is more active in reverse micelles than in bulk aqueous solution by a factor of 2. This ‘superactivity’ is lost at higher W0 values and the kcat in reverse micelles is found to be similar to that observed in aqueous bulk. At pH 5, the enzyme activity is found to be independent of W0 while at pH 6.0–6.5 the enzyme activity is low at W0 5 and increases with water content to a constant value which is still 50% lower than that in aqueous buffer. Above pH 7, the Wo-activity profile becomes distinctly bell shaped with W0 optimum around 10–15. The enzyme activity at optimum W0 is close to that observed in aqueous bulk.  相似文献   

6.
Soil pH is a key predictor of plant species occurrence owing to its effect on the availability of nutrients and phytotoxic metals. Although regional differences in realized soil pH niche (‘niche shifts’) have been reported since the 19th century, no study has disentangled how they are influenced by spatial differences in substrate availability, macroclimate, and competitors. We linked plot‐level data on species occurrence and measured soil pH from dry grasslands in eight regions across Eurasia (n = 999 plots), spanning a geographic gradient of 6862 km. We calculated regional shifts in niche optimum (Dopt) and width (Dwidth) for 73 Species × Region 1 × Region 2 combinations (SRRs; 38 study species) using extended Huisman–Olff–Fresco models. Next, we used commonality analysis to partition the contribution of substrate availability, precipitation, and species traits indicative of competitive ability to variation in regional niche shifts. Shifts in optimum were rare (5% of SRRs with Dopt ≥ 1 pH units) but many species did not show optima within regions. By contrast, shifts in niche width were common (22% of SRRs with Dwidth ≥1 pH units) and there were pronounced interspecific differences. Whereas none of the three predictors significantly explained shifts in niche optimum, common and unique effects of substrate availability and precipitation accounted for 85% of variation in niche width. Our results suggest that substrate availability and precipitation could be the driving factors behind species regional shifts in niche width. Studies that address additional factors, such as other edaphic niches, and their variability at the regional and micro‐scale will improve our understanding of the mechanisms underlying species distributions.  相似文献   

7.
Aims: To investigate the appropriateness of the extended Lambert–Pearson model (ELPM) to model the effect of pH (as hydrogen and hydroxyl ions) over the whole biokinetic pH range in comparison with other available models. Methods and Results: Data for the effect of pH on microbial growth were obtained from the literature or in‐house. Data were examined using several models for pH. Models were compared using the residual mean of squares. Using the ELPM, pH was modelled as hydrogen ions and hydroxyl ions; hence, the model was monotonic in each. The ELPM was able to model data more successfully than the cardinal pH model (CPM) and other models in the majority of cases. Conclusions: Examining the effect of pH as hydrogen and hydroxyl ions has the advantage that the basic form of the ELPM can be retained as each is treated as a distinct antimicrobial effect. With the ELPM, each inhibitor is described by two parameters; from these parameters, the pHmin, pHopt and pHmax can be obtained. Furthermore, the idea of a dose response, absent from other models, becomes important. Significance and Impact of the Study: The CPM is an excellent model for certain situations – where there is a high degree of symmetry between the suboptimal pH and superoptimal pH response and where there are few data points available. The ELPM is more amenable to highly asymmetric behaviour, especially where plateaus of effect around the pH optimum are observed and where the number of data points is not restrictive.  相似文献   

8.
Anaerobic alkalithermophiles, a novel group of extremophiles   总被引:2,自引:0,他引:2  
Although some anaerobic and aerobic mesophiles have long been known to grow at alkaline pH (above 9.5), little was known until recently about thermophilic alkaliphiles, termed now alkalithermophiles. This minireview describes presently known and recently validly described anaerobic alkalithermophilic bacteria (pHopt 55C > 8.5; Topt > 55°C) and alkalitolerant thermophiles (pHopt 55C < 8.5 but pHmax 55C above 9.0). Some of these are widely distributed, but others have been isolated (thus far) only from one specific location. This novel group of anaerobic bacteria is comprised of physiologically different genera and species which, so far, all belong to the Gram-type positive Bacillus-Clostridium phylogenetic subbranch. An interesting feature of these anaerobic alkalithermophiles is that most of the isolates have short doubling times. The fastest growing among them are strains of Thermobrachium celere, with doubling times as short as 10 min while growing above pH 9.0 and above 55°C. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

9.
Soil pH is commonly measured in water (pHw) or 0.01 M CaCl2 (pHCa). The need to convert between these methods has led to the publication of linear, quadratic and cubic polynomial relationships for limited suites of soils. Concerns over the applicability of such relationships when mapping a wide range of soils and pH led to the establishment of a database of pHW and pHCa values on each of 7894 samples from soil survey and field experimental sites in Queensland. The relationship between pHW and pHCa across all soils was investigated and preliminary results examining the effect of soil depth and soil type on the relationship are presented.For all soils and depths, a linear regression accounted for 93.2% of the variation but did not predict pHCa well at very high or low pHW values. The inclusion of second and third powers of pHW accounted for significantly more of the variation (R2=0.94) in pHCa and the resultant curve matched the data better at high and low pH.Analysis of surface, sub-surface and subsoil groupings did not reveal any appreciable differences in the relationship between pHW and pHCa attributable to depth. In contrast, differences in the relationship were evident between soil types. Generally, the mildly leached soils had linear relationships, while the weathered soils were distinctly curvilinear at low pH.  相似文献   

10.
Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi‐cation via photosynthesis‐induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME ? pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4–7.5), suggesting a greater dependence on membrane‐bound CA for the dehydration of HCO3? ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.  相似文献   

11.
Archaeal microorganisms that grow optimally at Na+ concentrations of 1.7 M, or the equivalent of 10% (w/v) NaCl, and greater are considered to be extreme halophiles. This review encompasses extremely halophilic archaea and their growth characteristics with respect to the correlation between the extent of alkaline pH and elevated temperature optima and the extent of salt tolerance. The focus is on poly-extremophiles, i.e., taxa growing optimally at a Na+ concentration at or above 1.7 M (approximately 10% w/v NaCl); alkaline pH, at or above 8.5; and elevated temperature optima, at or above 50°C. So far, only a very few extreme halophiles that are able to grow optimally under alkaline conditions as well as at elevated temperatures have been isolated. The distribution of extremely halophilic archaea growing optimally at 3.4 M Na+ (approximately 20% w/v NaCl) is bifurcated with respect to pH optima, either they are neutrophilic, with a pHopt of approximately 7, or strongly alkaliphilic, with pHopt at or above 8.5. Amongst these extreme halophiles which have elevated pH optima, only four taxa have an optimum temperature above 50°C: Haloarcula quadrata (52°C), Haloferax elongans (53°C), Haloferax mediterranei (51°C) and Natronolimnobius ‘aegyptiacus’ (55°C).  相似文献   

12.
A chemolithoautotrophic sulfur-oxidizing bacterium (SOB) strain ALCO 1 capable of growing at both near-neutral and extremely alkaline pH was isolated from hypersaline soda lakes in S-W Siberia (Altai, Russia). Strain ALCO 1 represents a novel separate branch within the halothiobacilli in the Gammaproteobacteria, which, so far, contained only neutro-halophilic SOB. On the basis of its unique phenotypic properties and distant phylogeny, strain ALCO 1 is proposed as a new genus and species Thioalkalibacter halophilus gen. nov. sp. nov. ALCO 1 was able to grow within a broad range of salinity (0.5–3.5 M of total sodium) with an optimum at around 1 M Na+, and pH (7.2–10.2, pHopt at around 8.5). Na+ was required for sulfur-dependent respiration in ALCO 1. The neutral (NaCl)-grown chemostat culture had a much lower maximum growth rate (μmax), respiratory activity and total cytochrome c content than its alkaline-grown counterpart. The specific concentration of osmolytes (ectoine and glycine-betaine) produced at neutral pH and 3 M NaCl was roughly two times higher than at pH 10 in soda. Altogether, strain ALCO 1 represents an interesting chemolithoautotrophic model organism for comparative investigations of bacterial adaptations to high salinity and pH. Nucleotide sequence accession number: The GenBank/EMBL accession number of the 16S rRNA gene sequence of strain ALCO1T is EU124668.  相似文献   

13.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

14.
Intracellular pH (pHi) affects smooth muscle function, yet little is known concerning its regulation. I have therefore investigated pH regulation in rat uterus, using 31P-NMR spectroscopy. A change in extracellular pH(pHe) of 1 pH unit (7.4 to 6.4) elicited a 0.29 change in pHi; smaller changes in pHo were accompanied by proportionately smaller changes in pHi. The pH changes were reversible. There was no fall of uterine ATP or phosphocreatine during the pH changes.  相似文献   

15.
Intracellular pH (pHi) affects smooth muscle function, yet little is known concerning its regulation. I have therefore investigated pH regulation in rat uterus, using 31P-NMR spectroscopy. A change in extracellular pH(pHe) of 1 pH unit (7.4 to 6.4) elicited a 0.29 change in pHi; smaller changes in pHo were accompanied by proportionately smaller changes in pHi. The pH changes were reversible. There was no fall of uterine ATP or phosphocreatine during the pH changes.  相似文献   

16.
Concanamycin 4-B, a macrolide antibiotic with an 18-membered lactone ring, is known as a specific inhibitor of the vacuolar type of H+-ATPase, as is bafilomycin A1. The drug was tested for its effect on regulation of the vacuolar pH (pHv) of internodal cells of a fresh water characean alga, Chara corallina, under normal conditions and under salt stress. The pHv was measured either on isolated vacuolar sap with a conventional pH electrode or directly by inserting a pH-sensitive glass microelectrode into the vacuole. Proton-pumping into tonoplast vesicles was almost completely inhibited by concanamycin 4-B at 1 nM. Concanamycin 4-B at 1 μM significantly increased pHv while bafilomycin A1 was ineffective when applied at 1 μM. Concanamycin 4-B did not affect pHv when applied at 0.1 μM and increasing the concentration to 10 μM did not amplify the degree of alkalization. Concanamycin 4-B also inhibited pHv regulation under NaCl stress. When Chara cells were treated with 100 mM NaCl, pHv promptly increased and then recovered to the original level. The reacidification was completely inhibited by concanamycin 4-B (1 μM), suggesting that the reacidification was achieved by the H+-ATPase of the tonoplast.  相似文献   

17.
Proton motive force (Δp) generation by Escherichia coli wild type cells during glycerol fermentation was first studied. Its two components, electrical—the membrane potential (?φ) and chemical—the pH transmembrane gradient (ΔpH), were established and the effects of external pH (pHex) were determined. Intracellular pH was 7.0 and 6.0 and lower than pHex at pH 7.5 and 6.5, respectively; and it was higher than pHex at pH 5.5. At high pHex, the increase of ?φ (?130 mV) was only partially compensated by a reversed ΔpH, resulting in a low Δp. At low pHex ?φ and consequently Δp were decreased. The generation of Δp during glycerol fermentation was compared with glucose fermentation, and the difference in Δp might be due to distinguished mechanisms for H+ transport through the membrane, especially to hydrogenase (Hyd) enzymes besides the F0F1-ATPase. H+ efflux was determined to depend on pHex; overall and N,N’-dicyclohexylcarbodiimide (DCCD)-inhibitory H+ efflux was maximal at pH 6.5. Moreover, ΔpH was changed at pH 6.5 and Δp was different at pH 6.5 and 5.5 with the hypF mutant lacking all Hyd enzymes. DCCD-inhibited ATPase activity of membrane vesicles was maximal at pH 7.5 and decreased with the hypF mutant. Thus, Δp generation by E. coli during glycerol fermentation is different than that during glucose fermentation. Δp is dependent on pHex, and a role of Hyd enzymes in its generation is suggested.  相似文献   

18.
Intracellular pH (pHint) and extracellular pH (pHext) of Escherichia coli were measured at 12-s time resolution by 31P-nuclear magnetic resonance: a sudden neutral-to-acid shift in pHext (e.g., from 7.0 to 5.6) caused a transient failure of homeostasis, with pHint decreasing by about 0.4 unit in ca. 30 s and then returning to its original value (ca. 7.5) over a period of several minutes. Membrane proton conductance was estimated to be 20 pmol s−1 cm−2 pH unit−1. Addition of the membrane-permeant weak acid benzoate at constant pHext also caused a lowering of pHint; at high concentrations it generated an inverted transmembrane pH gradient (ΔpH). The buffering capacity of the cells was estimated by such experiments to be ca. 50 mM per pH unit. Effects of pH-related stimuli on the methyl-accepting chemotaxis proteins (MCPs) were examined: the steady-state methylation of MCP I was found to decrease when pHint was lowered by weak acid addition or when pHext was lowered. The extent of demethylation in the latter case was too great to be explained by imperfect steady-state homeostasis; a small but reproducible undershoot in methylation level correlated with the observed short-term homeostatic failure. MCP II underwent smaller and more complex changes than MCP I, in response to pH-related stimuli. The methylation level of MCP I could not, by any condition tested, be driven below a limit of ca. 15% of the control level (unstimulated cells at pHext 7.0). The weak-acid concentration needed to reach that limit was dependent on pHext, as would be expected on the basis of ΔpH-driven concentrative effects. The potency ranking of weak acids was the same with respect to lowering pHint, demethylating MCP I, and causing repellent behavioral responses. The data are consistent with a model whereby MCP I and hence tactic behavior are sensitive to both pHint and pHext. Evidence is presented that pHint may also have a direct (non-MCP-related) effect on motor function. Comparison of methyl-3H- and 35S-labeled MCP I revealed that in both unstimulated and repellent-stimulated cells the major species did not carry methyl label, yet it had an electrophoretic mobility that indicated that it was more positively charged than the unmethylated form observed in methyltransferase mutants, and it was susceptible to base hydrolysis. This suggests that a substantial fraction of MCP I molecules is methylated or otherwise modified but neither exchanges methyl label nor undergoes reverse modification by repellent stimuli.  相似文献   

19.
The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pHout) of PCPECL liposomes, with an internal pH (pHin) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK a?~?6.9). Conversely, ΔpH generated by enhanced pHin of PCPECL at a pHout of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pHin at a pHout of 8.0. At bulk acidic pH, ΔΨ generated by Na+ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pHout, the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨM blocks inner mitochondrial membrane fusion during apoptosis.  相似文献   

20.
The food pathogen Bacillus cereus is likely to encounter acidic environments (i) in food when organic acids are added for preservation purposes, and (ii) during the stomachal transit of aliments. In order to characterise the acid stress response of B. cereus ATCC14579, cells were grown in chemostat at different pH values (pHo from 9.0 to 5.5) and different growth rates (μ from 0.1 to 0.8 h−1), and were submitted to acid shock at pH 4.0. Cells grown at low pHo were adapted to acid media and induced a significant acid tolerance response (ATR). The ATR induced was modulated by both pHo and μ, and the μ effect was more marked at pHo 5.5. Intracellular pH (pHi) was affected by both pHo and μ. At a pHo above 6, the pHi decreased with the decrease of pHo and the increase of μ. At pHo 5.5, pHi was higher compared to pHo 6.0, suggesting that mechanisms of pHi homeostasis were induced. The acid survival of B. cereus required protein neo-synthesis and the capacity of cells to maintain their pHi and ΔpH (pHi - pHo). Haemolysin BL and non-haemolytic enterotoxin production were both influenced by pHo and μ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号