首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Rheumatoid and psoriatic arthritis are chronic inflammatory diseases, with massive increase of cardiovascular events (CVE), and contribution of the cytokines TNF-α and IL-17. Chronic inflammation inside the joint membrane or synovium results from the activation of fibroblasts/synoviocytes, and leads to the release of cytokines from monocytes (Tumor Necrosis Factor or TNF) and from T lymphocytes (Interleukin-17 or IL-17). At the systemic level, the very same cytokines affect endothelial cells and vessel wall. We have previously shown [1], [2] that IL-17 and TNF-α, specifically when combined, increase procoagulation, decrease anticoagulation and increase platelet aggregation, leading to thrombosis. These results are the basis for the models of interactions between IL-17 and TNF, and genes expressed by activated endothelial cells. This work is devoted to mathematical modeling and numerical simulations of blood coagulation and clot growth under the influence of IL-17 and TNF-α. We show that they can provoke thrombosis, leading to the complete or partial occlusion of blood vessels. The regimes of blood coagulation and conditions of occlusion are investigated in numerical simulations and in approximate analytical models. The results of mathematical modeling allow us to predict thrombosis development for an individual patient.  相似文献   

3.
Targeting major proinflammatory cytokines such as IL-1β and TNFα is of great interest in patients with chronic inflammatory diseases, including rheumatoid arthritis, colitis, and psoriasis. The cytokine Interleukin (IL)-32 induces proinflammatory cytokines such as TNFα, IL-1β, IL-6, and chemokines. We previously used an IL-32 ligand-affinity column to purify proteinase 3, which is abundantly expressed in neutrophil and monocytic leukocytes but not in other cell types, and found that IL-32 is mainly produced by monocytic leukocytes. This evidence suggested that silencing endogenous IL-32 by short hairpin RNA (shRNA) in monocytic cells might reveal the precise function of endogenous IL-32. Indeed, lipopolysaccharide (LPS)- or phorbol myristate acetate (PMA)-induced proinflammatory cytokine production was significantly inhibited in shRNA/IL-32 stable clones as compared to control clones. Furthermore, macrophages in PMA-differentiated shRNA/IL-32 stable clones displayed remarkably impaired LPS- and IL-1β-induced proinflammatory cytokine production. These data suggest that IL-32 is not only involved in host defense against pathogens, but also might play a role in chronic inflammatory diseases. IL-32 production leads to major proinflammatory cytokine production during the initial immune response.  相似文献   

4.
Sterile inflammation contributes to many common and serious human diseases. The pro-inflammatory cytokine interleukin-1β (IL-1β) drives sterile inflammatory responses and is thus a very attractive therapeutic target. Activation of IL-1β in sterile diseases commonly requires an intracellular multi-protein complex called the NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome. A number of disease-associated danger molecules are known to activate the NLRP3 inflammasome. We show here that depletion of zinc from macrophages, a paradigm for zinc deficiency, also activates the NLRP3 inflammasome and induces IL-1β secretion. Our data suggest that zinc depletion damages the integrity of lysosomes and that this event is important for NLRP3 activation. These data provide new mechanistic insight to how zinc deficiency contributes to inflammation and further unravel the mechanisms of NLRP3 inflammasome activation.  相似文献   

5.
Ganglioside-induced apoptosis in the cells of IL-2–dependent cytotoxic murine cell line CTLL-2 was shown to be caspase dependent: GM1-, GM2-, and GD3-induced suppression of cell proliferation was cancelled by a general caspase inhibitor Z-VAD-FMK. Ganglioside-induced apoptosis pathways are different for different individual glycolipids; the differences exist both at the initiation and effector stages of the caspase cascade. Only for GM1-induced process, molecular mechanisms of signal transduction coincide with the ones for CD95 and TNF: the participation of both the main initiation caspases 8, 1, and 4, and caspases 3 and 9 as well, has been shown. Caspase 3 participates in the pathway induced by GM3, GD1a, GD1b, and GT1b, but not by GM2. As morphological features show, tumor-associated ganglioside GM2 is also a stimulus of programmed cell death (PCD) for CTLL-2 cell line: addition of GM2 into cell culture has resulted in appearance of annexin V-positive cells and in accumulation of DNA breaks (shown by the TUNEL direct dyeing of the open ends). But a caspase 3 inhibitor Z-DEVD-FMK did not restore the cell proliferation suppressed by GM2, and addition of a fluorescent substrate of caspase 3 Ac-DEVD-AFC did not result in the fluorescence development. So caspase 3 does not participate in downstream pathways of GM2-induced cell apoptosis, and a PCD-effector system other than the apoptosome-mediated one is involved here.  相似文献   

6.

Introduction  

A feature of rheumatoid arthritis (RA) is an imbalance between proinflammatory and anti-inflammatory cytokines. Several recent studies have implicated polymorphism in the IL-4 signalling pathway in the development of erosive RA. The aim of the present study was to investigate the role of polymorphism in the IL-4, IL-4Rα and IL-13 genes in RA, including an examination of epistasis.  相似文献   

7.
Cytokine and activation of lymphocytes are critical for tumor growth. We investigated whether interleukin (IL)-32β overexpression changes other cytokine levels and activates cytotoxic lymphocyte, and thus modify tumor growth. Herein, IL-32β inhibited B16 melanoma growth in IL-32β-overexpressing transgenic mice (IL-32β mice), and downregulated the expressions of anti-apoptotic proteins (bcl-2, IAP, and XIAP) and cell growth regulatory proteins (Ki-67 antigen (Ki-67) and proliferating cell nuclear antigen (PCNA)), but upregulated the expressions of pro-apoptotic proteins (bax, cleaved caspase-3, and cleaved caspase-9). IL-32β also inhibited colon and prostate tumor growth in athymic nude mice inoculated with IL-32β-transfected SW620 colon or PC3 prostate cancer cells. The forced expression of IL-32β also inhibited cell growth in cultured colon and prostate cancer cells, and these inhibitory effects were abolished by IL-32 small interfering RNA (siRNA). IL-10 levels were elevated, but IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were reduced in the tumor tissues and spleens of IL-32β mice, and athymic nude mice. The number of cytotoxic T (CD8+) and natural killer (NK) cells in tumor tissues, spleen, and blood was significantly elevated in IL-32β mice and athymic nude mice inoculated with IL-32β-transfected cancer cells. Constituted activated NF-κB and STAT3 levels were reduced in the tumor tissues of IL-32β mice and athymic nude mice, as well as in IL-32β-transfected cultured cancer cells. These findings suggest that IL-32β inhibits tumor growth by increasing cytotoxic lymphocyte numbers, and by inactivating the NF-κB and STAT3 pathways through changing of cytokine levels in tumor tissues.  相似文献   

8.
Tumor necrosis factor-α (TNF-α) is a potent proinflammatory cytokine produced predominantly by activated macrophages, and plays a central role in the protective immunity against intracellular pathogens and the pathogenesis of autoimmune and inflammatory diseases. While both the soluble and transmembrane forms of TNF-α (sTNF-α and tmTNF-α) are biologically functional, the latter but not the former acts as a receptor besides as a ligand, and transmit a retrograde signal in a cell-to-cell contact manner. The production of TNF-α by macrophages under Th2-type (allergic) inflammatory conditions has been ill defined, compared to that under Th1-type inflammatory conditions. Here we examined the effect of representative Th2-inducing cytokines IL-4 and IL-33 on the TNF-α expression in macrophages. IL-4 induced the production of neither sTNF-α nor tmTNF-α while IL-33 promoted the production of sTNF-α with no detectable tmTNF-α. Notably, the combination of IL-4 and IL-33 elicited the tmTNF-α expression on macrophages, in addition to the enhanced production of sTNF-α and IL-6. The IL-4/IL-33-elicited tmTNF-α expression was not observed in IL-6-deficient macrophages, suggesting the involvement of macrophage-derived IL-6 in the tmTNF-α expression. Indeed, the stimulation of macrophages with the combination of IL-4 and IL-6 induced the tmTNF-α expression with no detectable production of sTNF-α. Thus, IL-4 and IL-33 synergistically elicit the tmTNF-α expression on macrophages through the autocrine action of IL-6.  相似文献   

9.
The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion.  相似文献   

10.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes   总被引:18,自引:1,他引:17  
Chung Y  Yang X  Chang SH  Ma L  Tian Q  Dong C 《Cell research》2006,16(11):902-907
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.  相似文献   

11.
12.
Molecular Biology Reports - The coronary artery disease (CAD) is a chronic inflammatory disease caused by atherosclerosis, in which arteries become clogged due to plaque formation, fat...  相似文献   

13.
Interleukin (IL)-15 is essential for natural killer (NK), NKT and memory (m) CD8+ T cell development and function, and is currently under investigation as an immunotherapeutic agent for the treatment of cancer. Recently, the creation of IL-15 superagonist by complexing IL-15 and its high affinity receptor alpha (IL-15 Rα) in solution, inspired by the natural trans-presentation of IL-15, advances the potential of IL-15-based tumor immunotherapy. IL-15 superagonist shows promising advantages over monomeric IL-15 such as sustaining high circulating concentrations due to prolonged half-life and more potently stimulating NK and CD8+ T effector lymphocytes. So far, there are three different forms of recombinant IL-15 superagonist fusion protein based on configurational modifications. Gene therapy using engineered cells co-expressing IL-15/IL-15 Rα complex for cancer treatment is also emerging. All forms have demonstrated efficacy in causing tumor regression in animal studies, which provides strong rationale for advancing IL-15 superagonist through clinical trials. To date, there are fourteen phase I/II IL-15 superagonist trials in cancer patients and one phase I trial in HIV patients. Information generated by ongoing trials regarding the toxicity and efficacy of IL-15 superagonist is awaited. Finally, we elaborate on immunotoxicity caused by IL-15 superagonist in preclinical studies and discuss important safety considerations.  相似文献   

14.
The present study investigated the peripheral blood mononuclear cells (PBMC) blastic responses to PHA, PHA plus recombinant IL-2 (rIL-2) and rIL-2 alone; the expression of membrane-bound IL-2R on PHA-stimulated PBMC; and the levels of IL-1α, IL-2, IL-6, and sIL-2R in serum and in culture supernatants from PHA-stimulated PBMC in 17 patients with hematological malignancies (mean age 58.5 yr, range 22–82): 6 with non-Hodgkin’s lymphoma (NHL), 4 with Hodgkin’s lymphoma (HL), 5 with Hairy cell leukemia, 1 with chronic myelogenous leukemia, and 1 with chronic lymphocytic leukemia. The patients with HL and NHL with active disease (AD) were separated from those in clinical remission. The patients with AD were studied at diagnosis (obviously before therapy) and the patients in clinical remission were out of therapy since at least 6 mo. The lymphocyte blastogenic response to PHA was significantly lower in patients with HL and NHL with AD than in the control group. The response to rIL-2 alone was in the same range in the control group and in HL and NHL AD patients. By adding rIL-2 to PHA there was an increase of the blastogenic response of the same patients. The percentage of CD25 expressed on PHA-stimulated lymphocytes from patients with HL and NHL AD and from normal subjects is in the same range. Serum levels of IL-2, IL-6, and sIL-2R were significantly higher in HL and NHL AD patients than in controls as well as in all other hematological malignancies. Supernatants derived from PHA-stimulated PBMC were assessed for the presence of cytokines and sIL-2R by ELISA. The levels of IL-2, IL-6, and sIL-2R were significantly lower in HL and NHL AD patients than in controls as well as in all other hematological malignancies.  相似文献   

15.
Abstract

Cytokines play an important role in the pathogenesis of kidney disease and its progression to end-stage renal disease (ESRD). Inflammation is regulated by the genes of the interleukin 1 (IL-1) gene cluster. Therefore, it was hypothesized that a polymorphism in this gene cluster may be associated with the risk of ESRD. Polymorphisms in the IL-1 gene cluster were examined in a cohort of 222 ESRD patients and 206 controls of similar ethnicity. These individuals were genotyped for IL-1 β (promoter –511 and exon-5 +3953) genes and a variable number of tandem repeats (VNTR) in the IL-1 receptor antagonist gene (IL-1Ra). There was significant difference in genotype frequencies between ESRD patients and control group for IL-1β (promoter region and exon-5) and IL-1Ra gene polymorphism (p<0.001, 0.006 and?<?0.001, respectively). A significant difference was observed in IL-1Ra for 1/1 (410/410) and 1/2 (410/240) genotypes, and the risk for ESRD was higher in those carrying the 1/1 genotype (p=0.014, OR?=?1.692, and p<0.001, OR?=?0.163). Also identified was a novel, rare allele of a single copy of 86 bp in ESRD patients as compared with the controls. The haplotype ‘T-E2-1’ frequency distribution between patients and controls revealed greater than threefold risk (p=0.001, OR?=?3.572, 95% CI?=?1.589–8.032). Genetic linkage between the IL-1β promoter region and exon-5 and between the IL-1β promoter and IL-1Ra of IL-1 gene demonstrated a strong association among the variants in controls (D′?=?0.42, p<0.001, and D′?=?0.39, p=0.001). Thus, the three polymorphisms within the IL-1 cluster are associated with ESRD. This finding is perhaps one of the strongest associations between genotype and ESRD reported, and it suggests that the IL-1 gene cluster affects the risk of development of ESRD.  相似文献   

16.
The outcome of pathological process during sepsis caused by Gram-negative bacteria depends on the reaction of human blood cells to bacterial structural components, lipopolysaccharides (LPS). A general inflammatory response develops due to the increased production of proinflammatory cytokines. One of the current methods of prevention of inflammatory response is the inhibition of LPS binding to cellular receptors. We have studied the efficacy of antagonistic properties of LPS from Rhodobacter capsulatus on the production of TNF-α, IL-6, and IL-1β cytokines induced by toxic LPS from Salmonella typhimurium and Escherichia coli in human whole blood. LPS from R. capsulatus in concentrations of 0.1 and 1 μg/mL did not induce synthesis of TNF-α, IL-6, or IL-1β. Measurements of cytokine levels showed that LPS from R. capsulatus exerted a clear protective effect against toxic LPS. In particular, LPS from R. capsulatus fullly inhibited the production of TNF-α and IL-1β and significantly decreased the IL-6 production induced by LPS from S. typhimurium. Additionally, LPS from R. capsulatus antagonized the effects of LPS from E. coli, fully inhibiting the TNF-α production and decreasing the IL-6 and IL-1β levels by 60% and 70%, respectively. Thus, LPS from R. capsulatus acts as a potent antagonist of cell activation induced by toxic LPS.  相似文献   

17.
Neuroinflammation has been shown to contribute to neurodegenerative and psychiatric disorders such as Alzheimer's disease and major depression due to the inappropriate release of pro-inflammatory cytokines from activated microglia. The precise molecular events that mediate cytokine release from glia remain unknown but we suggest that the serine/threonine kinase glycogen synthase kinase-3 (GSK-3) may be involved. The aim of this study therefore was to investigate the effect of lipopolysaccharide (LPS) on expression and activity of the GSK-3β isoform in glia, and to assess if GSK-3 mediates the LPS-induced change in inflammatory cytokine levels in culture medium from rat glial-enriched cortical cultures. GSK-3β was expressed in microglia and astrocytes, and stimulation of these cultures with LPS induced an increase in GSK-3β expression and activity, and in pro-inflammatory cytokine levels in culture media. We show that GSK-3 inhibition using a small molecule inhibitor SB216763 or the mood stabiliser lithium chloride reduced the LPS-induced elevated levels of pro-inflammatory cytokines present in culture media from rat glial-enriched cortical cultures. These results demonstrate a role for GSK-3 as a modulator of inflammatory cytokine levels in the brain, and contribute to a mechanistic insight into neurological disorders in which neuroinflammation is a characteristic feature.  相似文献   

18.
Muscle fibers are formed during embryonic development by the fusion of mononucleated myoblasts. The spatial structure and molecular composition of the sarcolemma are crucial for the myoblast recognition and fusion steps. Cyclodextrins are a group of substances that have the ability to solubilize lipids through the formation of molecular inclusion complexes. Previously, we have shown that methyl-β-cyclodextrin (MbCD) enhances muscle differentiation. Here, we analyzed the effects of α-cyclodextrin (aCD) during myogenesis. Myogenic cultures treated with aCD showed an increase in myoblast fusion and in the expression of myogenin, sarcomeric tropomyosin and desmin. aCD-conditioned media accelerates myogenesis in a similar way as aCD does, and increased levels of IL-4 were found in aCD-conditioned media. aCD-induced effects on myogenesis were inhibited by an anti-IL4 antibody. These results show that α-cyclodextrin induces myogenic differentiation by the release of IL-4.  相似文献   

19.
It is well established that reciprocal modulation exists between the central nervous system and immune system. Interleukin (IL)-1β, a proinflammatory cytokine secreted at early stage of immune challenge, has been recognized as one of the informational molecules in immune-to-brain communication. However, how this large molecule is transmitted to the brain is still unknown. In recent years it has been reported that the cranial nerves, especially the vagus, may play a pivotal role in this regard. It is proposed that IL-1β may bind to its corresponding receptors located in the glomus cells of the vagal paraganglia and then elicit action potentials in the nerve. The existence of IL-1 receptor type I (IL-1RI) in the vagal paraganglia has been shown. The carotid body, which is the largest peripheral chemoreceptive organ, is also a paraganglion. We hypothesize that the carotid body might play a role similar to the vagal paraganglia because they are architectonically similar. Recently we verified the presence of IL-1RI in the rat carotid body and observed increase firing in the carotid sinus nerve following IL-1β stimulation. The aim of this study was to observe the changes in expression of IL-1RI and tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, in the glomus cells of the rat carotid body following intraperitoneal injection of IL-1β. The radioimmunoassay result showed that the blood IL-1β level was increased after the intraperitoneal injection of rmIL-1β (750 ng/kg) from 0.48 ± 0.08 to 0.78 ± 0.07 ng/ml (P < 0.05). Immunofluorescence and Western blot analysis showed that the expression of IL-1RI and TH in the rat carotid body was increased significantly following peritoneal IL-1β stimulation. In addition, double immunofluorescence labeling for TH and PGP9.5, a marker for glomus cells, or TH immunofluoresence with hematoxylin-eosin (HE) counterstaining revealed that a considerable number of glomus cells did not display TH immunoreactivity. These data provide morphological evidence for the response of the carotid body to proinflammatory cytokine stimulation. The results also indicate that not all of the glomus cells express detectable TH levels either in normal or in some abnormal conditions. Xi-Jing Zhang and Xi Wang are co-first authors.  相似文献   

20.
The cytokine interleukin-1β (IL-1β) is a key mediator of the inflammatory response. Essential for the host-response and resistance to pathogens, it also exacerbates damage during chronic disease and acute tissue injury. It is not surprising therefore that there is a huge level of interest in how this protein is produced and exported from cells. However, the mechanism of IL-1β release has proven to be elusive. It does not follow the conventional ER-Golgi route of secretion. A literature full of disparate observations arising from numerous experimental systems, has contributed to a complicated mix of diverse proposals. Here we summarise these observations and propose that secretion of IL-1β occurs on a continuum, dependent upon stimulus strength and the extracellular IL-1β requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号