首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of mutations and genetic background on the mating activity of male and receptivity of female Drosophila melanogaster have been studied at different population densities. Population density, as well as its combinations with other factors, significantly affects mating behavior of D. melanogaster. There are two distinct trends in the effect of this factor on mating behavior: the maximum larval overpopulation may cause either a significant suppression of the behaviors studied or an increase in their expressivity. The mating behaviors of wa and cn mutants against a certain genetic background changed similarly in response to varying population density.  相似文献   

2.
Multiple genetic and environmental factors interact to influence starvation resistance, which is an important determinant of fitness in many organisms, including Drosophila melanogaster. Recent studies have revealed that mating can alter starvation resistance in female D. melanogaster, but little is known about the behavioral and physiological mechanisms underlying such mating-mediated changes in starvation resistance. In the present study, we first investigated whether the effect of mating on starvation resistance is sex-specific in D. melanogaster. As indicated by a significant sex × mating status interaction, mating increased starvation resistance in females but not in males. In female D. melanogaster, post-mating increase in starvation resistance was mainly attributed to increases in food intake and in the level of lipid storage relative to lean body weight. We then performed quantitative genetic analysis to estimate the proportion of the total phenotypic variance attributable to genetic differences (i.e., heritability) for starvation resistance in mated male and female D. melanogaster. The narrow-sense heritability (h2) of starvation resistance was 0.235 and 0.155 for males and females, respectively. Mated females were more resistant to starvation than males in all genotypes, but the degree of such sexual dimorphism varied substantially among genotypes, as indicated by a significant sex × genotype interaction for starvation resistance. Cross-sex genetic correlation was greater than 0 but less than l for starvation resistance, implying that the genetic architecture of this trait was partially shared between the two sexes. For both sexes, starvation resistance was positively correlated with longevity and lipid storage at genetic level. The present study suggests that sex differences in starvation resistance depend on mating status and have a genetic basis in D. melanogaster.  相似文献   

3.
Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments.  相似文献   

4.
Altitudinal localities of the northern India are associated with high seasonal changes. Drosophila melanogaster flies are darker during the winter season as compared to the autumn season. We tested the hypothesis whether there are altitudinal clines for mating related traits. We observed negative cline for mating latency and positive for copulation period along altitude in D. melanogaster. We further tested if seasonally varying body melanisation is correlated with mating propensity in D. melanogaster. Thus, we examined the D. melanogaster flies collected during autumn and winter season for changes in body melanisation and mating-related traits. Flies from the winter season show high melanisation, copulation duration and fecundity/day as compared to the autumn season flies. By contrast mating latency is longer during autumn as compared to winter season. Based on within- and between-population analysis, body melanisation shows positive correlation with copulation duration and fecundity/day, while negative correlation with mating latency. Within-population analyses show no correlation between body size and ovariole number with body melanisation. Thus, our data suggest that seasonal changes in body melanisation are correlated with mating latency, copulation duration and fecundity/day, but no correlation with body size and ovariole numbers. Further, we observed that seasonal changes in these clines, although have some component of plasticity, have strong genetic basis as the seasonal and population differences were maintained for various traits after 8 generations in the laboratory.  相似文献   

5.
In this study, we examined the influence of female size on mating success in Drosophila melanogaster. The results that were obtained from experiments performed in mating chambers allowed us to confirm the results of previous studies, demonstrating higher mating success of larger D. melanogaster males, and to conclude that female size also affects mating success, either when considering a single male or two competing males. We observed that the advantage for larger males depends on their size relative to that of the female, demonstrating a previously unknown role for female size in mating behavior studies. This effect of female size on mating success depends on various factors: males take longer to initiate courtship toward larger females, large females receive more wing vibrations from males prior to mating, and large females tend to keep moving for longer periods during male courtship. The importance of this finding is discussed in the context of recent reports on sexual conflict in D. melanogaster, in which males were observed to depress fitness in females as a result of intercourse.  相似文献   

6.
Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases1. We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials2-4. The rapid iterative negative geotaxis (RING) assay5 has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously using large number of animals, with the high-throughput approach making it more amenable for screening experiments.  相似文献   

7.
Habitat fragmentation has been shown to disrupt ecosystem processes such as plant-pollinator mutualisms. Consequently, mating patterns in remnant tree populations are expected to shift towards increased inbreeding and reduced pollen diversity, with fitness consequences for future generations. However, mating patterns and phenotypic assessments of open-pollinated progeny have rarely been combined in a single study. Here, we collected seeds from 37 Eucalyptus incrassata trees from contrasting stand densities following recent clearance in a single South Australian population (intact woodland=12.6 trees ha−1; isolated pasture=1.7 trees ha−1; population area=10 km2). 649 progeny from these trees were genotyped at eight microsatellite loci. We estimated genetic diversity, spatial genetic structure, indirect contemporary pollen flow and mating patterns for adults older than the clearance events and open-pollinated progeny sired post-clearance. A proxy of early stage progeny viability was assessed in a common garden experiment. Density had no impact on mating patterns, adult and progeny genetic diversity or progeny growth, but was associated with increased mean pollen dispersal. Weak spatial genetic structure among adults suggests high historical gene flow. We observed preliminary evidence for inbreeding depression related to stress caused by fungal infection, but which was not associated with density. Higher observed heterozygosities in adults compared with progeny may relate to weak selection on progeny and lifetime-accumulated mortality of inbred adults. E. incrassata appears to be resistant to the negative mating pattern and fitness changes expected within fragmented landscapes. This pattern is likely explained by strong outcrossing and regular long-distance pollen flow.  相似文献   

8.
E. Zouros 《Genetics》1981,97(3-4):703-718
The chromosomal determination of interspecific differences in mating behavior was studied in the interfertile pair, Drosophila arizonensis and Drosophila mojavensis, by means of chromosomal substitutions. Interspecific crossing over was avoided by crossing hybrid males to parental females, and identification of the origin of each chromosome in backcrossed hybrids was possible by means of allozyme markers. It was found that male mating behavior is controlled by factors located in the PGM-marked chromosome (which, in other Drosophila species, is part of the X chromosome) and in the Y chromosome. The other chromosomes influence male sexual behavior through their interactions with each other and with the PGM-marked chromosome, but their overall effect is minor. Female mating behavior is controlled by factors located in the ODH-marked and AMY-marked chromosomes, with the other chromosomes exercising a small additive effect. Hence, the two sex-specific behaviors are under different genetic control. Cytoplasmic origin has no effect on the mating behavior of either sex. There appears to be no correlation between a chromosome's structural diversity (i.e., amounts of inversion polymorphism within a species or numbers of fixed inversions across species) and its contribution to sexual isolation. These findings are in general agreement with those from similar Drosophila studies and may not be specific to the species studied here.  相似文献   

9.
Two important components of mating behavior, mating latency and duration of copulation, were examined during first and second mating in D. melanogaster females. Our results confirm the published findings of lower receptivity of previously mated D. melanogaster females, since fertilized females present significantly longer mating latencies. Duration of copulation also depends on female mating experience, as naive females copulated significantly longer than those previously mated. An important role of female D. melanogaster in the control of both examined components of mating behavior is displayed in the course of second mating, as part of behavioral and physiological changes induced by the first mating. The article is published in the original.  相似文献   

10.
11.
Relative to an equivalent source of variation that do not present a hidden state, cryptic genetic variation is likely to be an effective source for possible adaptations at times of atypical environmental conditions. In addition to environmental perturbations, it has also been proposed that genetic disturbances can generate release of cryptic genetic variation. The genetic basis and physiology of olfactory response in Drosophila melanogaster is being studied profusely, but almost no analysis has addressed the question if populations harbor cryptic genetic variation for this trait that only manifests when populations experiences a typical or novel conditions. We quantified olfactory responses to benzaldehyde in both larval and adult lifecycle stages among samples of chromosome two substitution lines extracted from different natural populations of Argentina and substituted into a common inbred background. We also evaluated whether an effect of genetic background change, occurred during chromosome substitution, affect larval and adult olfactory response in terms of release of cryptic genetic variation. Results indicate the presence of genetic variation among chromosome substitution lines in both lifecycle stages analyzed. The comparative analyses between chromosome 2 substitution lines and isofemale lines used to generate the chromosome 2 substitution lines shown that only adults exhibited decanalizing process for olfactory response to benzaldehyde in natural populations of D. melanogaster, i.e., release of hidden genetic variation. We propose that this release of hidden genetic variation in adult flies is a consequence of the shift in genetic background context that happens in chromosome 2 substitution lines, that implies the disruption of natural epistatic interactions and generation of novel ones. All in all, we have found that changes across D. melanogaster development influence visible and cryptic natural variation of olfactory behavior. In this sense, changes in the genetic background can affect gene-by-gene interactions (epistasis) generating different or even novel phenotypes as consequence of phenotypic outcome of cryptic genetic variation.  相似文献   

12.
E. H. Grell 《Genetics》1976,83(4):753-764
The aspartate aminotransferases (designated GOT1 and GOT2) are two enzymes of Drosophila melanogaster for which naturally occurring electrophoretic variants were not found. There is an electrophoretic difference between D. melanogaster and D. simulans. Since the F 1 hybrid offspring of these species are sterile, a genetic analysis of the ordinary type cannot be done on differences between the two species. A method was devised to make "partial hybrids" in which one chromosome arm is homozygous for melanogaster genes in an otherwise hybrid background. By using this method, Got1 was localized to 2R and Got2 to 2L. Once a gene can be assigned to a chromosome, it may be followed in crossing schemes and mutations from mutagen treatments may be looked for. At the locus of Got1 a mutation with low activity was recovered and designated Got1lo. It was located at a genetic map position of 75 on 2R. A Got2 mutant with a greater migration to the anode was recovered and designated Got2 J. It was located at a genetic map position of 3.0, and in the salivary chromosome was between 22B1 and 22B4 inclusive.  相似文献   

13.
Individuals within the human population vary in their responses to antineoplastic drugs based on their genetic background. Five unique human, Caenorhabditis elegans, and Drosophila melanogaster genetic backgrounds with variable drug responses are represented above with different colors. The identification of specific genetic differences within the human population that underlie variable drug responses is a central goal of modern medicine, but remains challenging because of the highly heterogeneous human genome and lack of tractability of human studies. However, recent studies have shown that there is substantial variability in antineoplastic drug responses among individuals within the classic invertebrate species C. elegans and D. melanogaster. The conservation of variable antineoplastic drug responses in these model species suggests that common mechanisms may be affected by genetic differences within each species. We argue the tractability of these systems will enable the identification of specific genetic variants that underlie variable drug responses.
  相似文献   

14.
The fruit fly, Drosophila melanogaster, is a model species in evolutionary studies. However, population processes of this species in East Asia are poorly studied. Here we examined the population genetic structure of D. melanogaster across China. There were 14 mitochondrial haplotypes with 10 unique ones out of 23 known from around the globe. Pairwise FST values estimated from 15 novel microsatellites ranged from 0 to 0.11, with geographically isolated populations showing the highest level of genetic uniqueness. STRUCTURE analysis identified high levels of admixture at both the individual and population levels. Mantel tests indicated a strong association between genetic distance and geographical distance as well as environmental distance. Full redundancy analysis (RDA) showed that independent effects of environmental conditions and geography accounted for 62.10% and 31.58% of the total explained genetic variance, respectively. When geographic variables were constrained in a partial RDA analysis, the environmental variables bio2 (mean diurnal air temperature range), bio13 (precipitation of the wettest month), and bio15 (precipitation seasonality) were correlated with genetic distance. Our study suggests that demographic history, geographical isolation, and environmental factors have together shaped the population genetic structure of D. melanogaster after its introduction into China.Subject terms: Genetic variation, Population genetics  相似文献   

15.
16.
17.
Vanaphan N  Dauwalder B  Zufall RA 《Gene》2012,491(2):142-148
The display of courtship behavior has evolved in response to sexual selection driven by competition to obtain mates. Sexually dimorphic mate selection rituals are likely controlled at least in part by genes with sex-biased patterns of expression. In Drosophila melanogaster, male courtship behavior has been well described and consists of a series of stereotyped behaviors. The takeout gene is predominantly expressed in males and affects male courtship behavior. In this study, we examine the patterns of expression and evolution in takeout and the family of related proteins. We show that a number of genes in the takeout gene family show male-biased expression in D. melanogaster, largely in non-reproductive tissues. Phylogenetic analysis reveals that this gene family is conserved across insects. As expected for genes with male-biased expression, we also find evidence of positive selection in some lineages. Our results suggest that the genes in this family may have evolutionarily conserved sex specific roles in male mating behavior across insects.  相似文献   

18.
Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases.  相似文献   

19.
Courtship song in D. melanogaster contributes substantially to male mating success through female selection. We used experimental evolution to test whether this display trait is maintained through adaptive female selection because it indicates heritable male quality for thermal stress tolerance. We used non-displaying, outbred populations of D. melanogaster (nub1) mutants and measured their rate of adaptation to a new, thermally stressful environment, relative to wild-type control populations that retained courtship song. This design retains sexually selected conflict in both treatments. Thermal stress should select across genomes for newly beneficial alleles, increasing the available genetic and phenotypic variation and, therefore, the magnitude of female benefit derived from courtship song. Following introduction to the thermally stressful environment, net reproductive rate decreased 50% over four generations, and then increased 19% over the following 16 generations. There were no differences between the treatments. Possible explanations for these results are discussed.  相似文献   

20.
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high‐throughput assays. Here, we measured voluntary consumption of ethanol in ~3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10?8. The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex‐specific, as found for other alcohol‐related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号