首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both gain- and loss-of-function mutations in the SCN5A gene, which encodes the α-subunit of the cardiac voltage-gated Na+ channel Nav1.5, are well established to underlie hereditary arrhythmic syndromes (cardiac channelopathies) such as the type 3 long QT syndrome, cardiac conduction diseases, Brugada syndrome, sick sinus syndrome, atrial standstill and numerous overlap syndromes. Although patch-clamp studies in heterologous expression systems have provided important information to understand the genotype–phenotype relationships of these diseases, they could not clarify how mutations can be responsible for such a large spectrum of diseases, the late age of onset or the progressiveness of some of them, and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological sequence of cardiac SCN5A-related channelopathies and several mouse models have been established. Here, we review the results obtained on these models that, for most of them, convincingly recapitulate the clinical phenotypes of the patients but that also have their own limitations. Mouse models turn out to be powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the cellular consequences of SCN5A mutations such as the remodelling of other gene expression that might participate in the overall phenotype and explain some of the differences among patients. Finally, they also constitute useful tools for future studies addressing as yet unanswered questions, such as the role of genetic and environmental modifiers on cardiac conduction and repolarisation.  相似文献   

2.
Summary The electrophysiological properties of EJ (human bladder carcinoma), GM2291 (human fetal lung fibroblast), and of three hybrid cell lines obtained from their cell fusion were investigated using the patch-clamp technique. GM2291 cells, which are nontumorigenic, express voltage-dependent Na+ channels. The pharmacology and gating properties of the Na+ channels in GM2291 cells are distinct from neuronal and cardiac Na+ channels. EJ cells, which are tumorigenic and contain activated c-Ha-ras, express inward rectifier K+ channels. The three cell-fusion hybrid lines, named 145 (nontumorigenic), 145L (non-tumorigenic but morphologically altered), and 147TR2 (fully tumorigenic segregant), have been previously shown to express levels of activated c-Ha-ras similar to those of the EJ parental line. Voltage-dependent Na+ channels were observed in none of the hybrid cell lines, while inward rectifier K+ channels were observed in each of the hybrid cell lines. The possibility that c-Ha-ras inhibits expression of a voltage-dependent Na+ channel is discussed.  相似文献   

3.
Various entities and genetic etiologies, including inherited long QT syndrome type 3 (LQT3), contribute to sudden infant death syndrome (SIDS). The goal of our research was to biophysically characterize a new SCN5A mutation (S1333Y) in a SIDS infant. S1333Y channels showed the gain of Na+ channel function characteristic of LQT3, including a persistent inward Na+ current and an enhanced window current that was generated by a −8 mV shift in activation and a +7 mV shift in inactivation. The correlation between the biophysical data and arrhythmia susceptibility suggested that the SIDS was secondary to the LQT3-associated S1333Y mutation.  相似文献   

4.
The role of putative Na+/H+ antiporters encoded by nhaS1 (slr1727), nhaS3 (sll0689), nhaS4 (slr1595), and nhaS5 (slr0415) in salt stress response and internal pH regulation of the cyanobacterium Synechocystis PCC 6803 was investigated. For this purpose the mutants (single, double, and triple) impaired in genes coding for Na+/H+ antiporters were constructed using the method of interposon mutagenesis. PCR analyses of DNA demonstrated that mutations in nhaS1, nhaS4, and nhaS5 genes were segregated completely and the mutants contained only inactivated copies of the corresponding genes. Na+/H+ antiporter encoded by nhaS3 was essential for viability of Synechocystis since no completely segregated mutants were obtained. The steady-state intracellular sodium concentration and Na+/H+ antiporter activities were found to be the same in the wild type and all mutants. No differences were found in the growth rates of wild type and mutants during their cultivation in liquid media supplemented with 0.68 M or 0.85 M NaCl as well as in media buffered at pH 7.0, 8.0, or 9.0. The expression of genes coding for Na+/H+ antiporters was studied. No induction of any Na+/H+ antiporter encoding gene expression was found in wild type or single mutant cells grown under high salt or at different pH values. Nevertheless, in cells of double and triple mutants adapted to high salt or alkaline pH some of the remaining Na+/H+ antiporter encoding genes showed induction. These results might indicate that some of Na+/H+ antiporters can functionally replace each other under stress conditions in Synechocystis cells lacking the activity of more than one antiporter.  相似文献   

5.
Two cDNAs isolated from Cymodocea nodosa, CnSOS1A, and CnSOS1B encode proteins with high-sequence similarities to SOS1 plant transporters. CnSOS1A expressed in a yeast Na+-efflux mutant under the control of a constitutive expression promoter mimicked AtSOS1 from Arabidopsis; the wild type cDNA did not improve the growth of the recipient strain in the presence of Na+, but a cDNA mutant that expresses a truncated protein suppressed the defect of the yeast mutant. In similar experiments, CnSOS1B was not effective. Conditional expression, under the control of an arabinose responsive promoter, of the CnSOS1A and CnSOS1B cDNAs in an Escherichia coli mutant defective in Na+ efflux was toxic, and functional analyses were inconclusive. The same constructs transformed into an E. coli K+-uptake mutant revealed that CnSOS1A was also toxic, but that it slightly suppressed defective growth at low K+. Truncation in the C-terminal hydrophilic tail of CnSOS1A relieved the toxicity and proved that CnSOS1A was an excellent low-affinity K+ and Rb+ transporter. CnSOS1B mediated a transient, extremely rapid K+ or Rb+ influx. Similar tests with AtSOS1 revealed that it was not toxic and that the whole protein exhibited excellent K+ and Rb+ uptake characteristics in bacteria.  相似文献   

6.

Background

SCN5A encodes the α-subunit (Nav1.5) of the principle Na+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS) variant 3 (LQT-3) in adults by disrupting inactivation of the Nav1.5 channel. Pharmacological targeting of mutation-altered Na+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS) and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.

Methods and Results

Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C) discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na+ channel blockers flecainide and mexiletine. Our goal was to determine the Na+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C) and a common variant in KCNH2 (K897T). Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na+ channels revealed significant changes in channel biophysics, all contributing to the proband''s phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.

Significance

The results of our study provide further evidence of the grave vulnerability of newborns to Na+ channel defects and suggest that both genetic background and age are particularly important in developing a mutation-specific therapeutic personalized approach to manage disorders in the young.  相似文献   

7.
8.
赵宏亮  倪细炉  侯晖  谢沁宓  程昊 《广西植物》2022,42(7):1150-1159
为揭示长苞香蒲(Typha domingensis)对盐生湿地生态系统中Na+和K+的吸收与转运特征,探讨长苞香蒲对盐生湿地的生态修复效果,该研究采用人工模拟盐生湿地的方法,设置CK(对照)、T1(浇灌100 mmol·L-1盐水)、T2(浇灌200 mmol·L-1盐水)及T3(浇灌300 mmol·L-1盐水)4种不同盐浓度的人工湿地生态系统,并分别于5月5日(开始盐胁迫处理,S0)、5月30日(S1)、6月30日(S2)和7月30日(S3)测量其株高和干重、植株地上与地下部分Na+和K+的含量以及底泥和水体中Na+和K+的含量以分析长苞香蒲对盐碱湿地的脱盐作用。结果表明:(1)各处理的长苞香蒲的株高和干重随着处理时间的延长呈增加趋势,但与CK相比,各处理生长量随盐浓度升高出现下降趋势。(2)高浓度盐处理(T3)使长苞香蒲的地上部分和地下部分的Na+分别增加了2.5...  相似文献   

9.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

10.
Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy, is one of the most severe forms of childhood epilepsy. DS is caused by a mutation in the neuronal voltage-gated sodium-channel alpha-subunit gene (SCN1A). However, 25–30% of patients with DS are negative for the SCN1A mutation screening, suggesting that other molecular mechanisms may account for these disorders. Recently, the first case of DS caused by a mutation in the neuronal voltage-gated sodium-channel beta-subunit gene (SCN1B) was also reported. In this report we aim to make the molecular analysis of the SCN1A and SCN1B genes in two Tunisian patients affected with DS. The SCN1A and SCN1B genes were tested for mutations by direct sequencing. No mutation was revealed in the SCN1A and SCN1B genes by sequencing analyses. On the other hand, 11 known single nucleotide polymorphisms were identified in the SCN1A gene and composed a putative disease-associated haplotype in patients with DS phenotype. One of the two patients with putative disease-associated haplotype in SCN1A had also one known single nucleotide polymorphism in the SCN1B gene. The sequencing analyses of the SCN1A gene revealed the presence of a putative disease-associated haplotype in two patients affected with Dravet syndrome.  相似文献   

11.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

12.
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.  相似文献   

13.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

14.

Background

The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome.

Method and Results

In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na+ currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation).

Conclusion

In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na+ current and depolarization force.  相似文献   

15.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the α- and β-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis α-toxin-Sepharose columns. The data suggest that the α-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

16.
Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.  相似文献   

17.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

18.
19.
The controlling effect of ATP, K+ and Na+ on the rate of (Na+ + K+)-ATPase inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) is used for the mathematical modelling of the interaction of the effectors with the enzyme under equilibrium conditions.
1. 1. Of a series of conceivable interaction models, designed without conceptual restrictions to describe the effector control of inactivation kinetics, only one fits the experimental data described in a preceding paper.
2. 2. The model is characterized by the coexistence of two binding sites for ATP and the coexistence of two separate binding sites for K+ and Na+ on the enzyme-ATP complex. On the basis of this model, the effector parameters fitting the experimental data most closely are estimated by means of nonlinear least-squares fits.
3. 3. The apparent dissociation constants for ATP of the enzyme-ATP complex or of the enzyme-(ATP)2 complex are computed to lie near 0.0024 mM and 0.34 mM, respectively, irrespective of whether K+ and Na+ were absent or K+ and K+ plus Na+, respectively, were present in the experiments.
4. 4. The origin of the high and the low affinity site for binding of ATP to the (Na+ + K+)-ATPase molecule is traced back to the coexistence of two catalytic centres which, although primarily equivalent as to the reactivity of their thiol groups with NBD-Cl, are induced into anticooperative communication by ATP binding and thus show an induced geometric asymmetry.
Keywords: (Na+ + K+)-ATPase; SH-group alkylation; Inactivation kinetics; Mathematical modelling; Substrate affinity  相似文献   

20.
5-Iodoacetamidofluorescein (5-IAF) covalently labels dog kidney (Na+ + K+)-ATPase with approximately 2 moles incorporated per mole of enzyme. ATPase and K+-phosphatase activities are fully retained after reaction, and the kinetic parameters for Na+, K+, Mg2+, ATP and p-nitrophenyl phosphate are likewise not significantly affected. The fluorescence of the bound 5-IAF is increased by ATP, Na+, and Mg2+, and decreased by K+. These fluorescence changes likely reflect ligand-induced stabilization of the E1 or E2 states of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号