首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin II is a biologically active component of the renin-angiotensin system. High levels of angiotensin II may be responsible for hypertension and heart failure because they increase systemic vascular resistance, arterial pressure, and sodium and fluid retention. Therefore, it is important to monitor angiotensin II levels for the treatment of hypertension and heart diseases. The goal of this work was to develop a bioluminescence immunoassay using aequorin as a label to measure angiotensin II levels in human plasma. This method utilizes a genetically engineered fusion protein between angiotensin II and aequorin. For that, the C terminus of angiotensin II was fused to the N terminus of apoaequorin using molecular biology techniques. A heterogeneous immunoassay was then developed for the determination of angiotensin II. A detection limit of 1 pg/mL was obtained with the optimized assay, allowing for the determination of angiotensin II at physiological levels in human plasma.  相似文献   

2.
Studies on the presence of angiotensin II in rat brain   总被引:4,自引:3,他引:1  
Abstract: Angiotensin II-like immunoreactivity was extracted from brains of bilaterally nephrectomized rats with several different extraction procedures (90% methanol, distilled water, 6 M urea, 0.1 N HCI, and 2 M acetic acid). The activity was measured with radioimmunoassays using three different antisera, two of which had been used previously for immunocytochemical studies. With none of the extraction procedures or antisera employed was more than 80 pg/g wet weight of angiotensin II-like immunoreactivity found. Analysis was undertaken with two different reverse-phase high-pressure liquid chromatography systems; in one of these the immunoreactivity did not coelute with angiotensin II or III. On the basis of its elution pattern from a molecular sieving column, the immunoreactivity seems to have a higher molecular weight than angiotensin II. It is concluded that neurons in the brain do not synthesize and store angiotensin II.  相似文献   

3.
Hypertension is a major risk factor for human morbidity and mortality through its effects on target organs like heart, brain and kidneys. More intensive treatment for the effective control of blood pressure significantly reduces the morbidity and mortality. The renin angiotensin system (RAS) is a coordinated hormonal cascade of major clinical importance in the regulation of blood pressure. The principal effector peptide of RAS is angiotensin II, which acts by binding to one of the two major angiotensin II receptors AT(1) and AT(2). Angiotensin II through AT(1) receptor mediates vast majority of biologically detrimental actions. Nonpeptidic angiotensin II (AT(1)) antagonists are the most specific means to block the renin angiotensin enzymatic cascade available presently. Majority of AT(1) antagonists are based on modifications of losartan structure, the first clinically used AT(1) antagonist. In this review, a comprehensive presentation of the literature on AT(1) receptor antagonists has been given.  相似文献   

4.
Endozepines represent a novel family of regulatory peptides that have been isolated by their ability to displace benzodiazepines from their binding sites. All endozepines derive from an 86 amino acid precursor polypeptide called diazepam binding inhibitor (DBI), which generates, through proteolytic cleavage, several biologically active endozepines. The aim of the present study was to compare the molecular forms of endozepines present in different regions of the rat brain and in various peripheral organs using an antiserum raised against the central (biologically active) region of DBI. Combination of HPLC analysis and RIA detection revealed the existence of two major forms (peaks I and II) of endozepine-immunoreactive peptides. The retention times of the two peaks (36 and 39 min, respectively) were identical in all tissues or organs tested. Western blotting analysis of cerebral cortex extracts confirmed the existence of two immunoreactive species with apparent molecular weights 4000 and 6000 Da, which respectively correspond to peaks I and II. Tryptic digestion of peaks I and II generated a single immunoreactive peptide that coeluted with the synthetic octadecaneuropeptide ODN [DBI(33–50)]. These results show that, in different parts of the brain and in various peripheral organs, DBI is rapidly processed to generate two peptides of apparent molecular weight of 4000 and 6000 Da, which both possess the biologically active determinant of endozepines.  相似文献   

5.
Angiotensin II binding sites were localized and quantified in individual brain nuclei from single rats by incubation of tissue sections with 1 nM 125I-[Sar1]-angiotensin II, [3H]-Ultrofilm autoradiography, computerized microdensitometry and comparison with 125I-standards. High angiotensin II binding was present in the circumventricular organs (organon vasculosum laminae terminalis, organon subfornicalis and area postrema), in selected hypothalamic nuclei (nuclei suprachiasmatis, periventricularis and paraventricularis) and in the nucleus tractus olfactorii lateralis, the nucleus preopticus medianus, the dorsal motor nucleus of the vagus and the nucleus tractus solitarii. High affinity (KA from 0.3 to 1.5 X 10(9) M-1) angiotensin II binding sites were demonstrated in the organon subfornicalis, the nucleus tractus solitarii and the area postrema after incubation of consecutive sections from single rat brains with 125I-[Sar1]-angiotensin II in concentrations from 100 pM to 5 nM. These results demonstrate and characterize brain binding sites for angiotensin II of variable high affinity binding both inside and outside the blood-brain barrier.  相似文献   

6.
Angiotensin II binding sites were demonstrated in human mononuclear leucocytes by use of [125I]angiotensin II. The binding of [125I]angiotensin II to mononuclear leucocytes was rapid and reversible. The abilities of unlabeled compounds to displace [125I]angiotensin II were proportional to their abilities to displace labeled hormone in adrenal and smooth muscle membrane preparations. The Scatchard plot revealed two apparent orders of binding sites. The affinity constants were comparable with those for binding sites in other main target tissues of angiotensin II.  相似文献   

7.
Inhibition of norepinephrine re-uptake by angiotensin in brain   总被引:1,自引:0,他引:1  
—A method for perfusion of rat brain ventricles accompanied by electrical stimulation of right vagus nerve was used in the study of the re-uptake mechanism of norepinephrine in rat brain. Tritiated norepinephrine was injected into the left lateral brain ventricle. After a 1-hr equilibration period, the brain was perfused, and effluent was collected and assayed for norepinephrine, normetanephrine and acid metabolites by means of column chromatography and liquid scintillation counting. Electrical stimulation of central end of right vagus nerve produced a significant release of norepinephrine and decrease of acid metabolites; this indicates a shift of catecholamines to extracellular sites. Angiotensin (200 ng/min) added to the perfusion fluid potentiated the effect of nerve stimulation. Cocaine, desmethylimipramine and phenoxybenzamine greatly reduced the release of norepinephrine from brain tissue. None on these drugs potentiated the effect of angiotensin. It is concluded that angiotensin prevents re-uptake of norepinephrine released by nerve stimulation. As a naturally occurring, physiologically active peptide, angiotensin seems to be highly specific in modulation of adrenergie neurotransmission, allowing increased extraneuronal accumulation of neurotransmitter.  相似文献   

8.
Atrial natriuretic peptides exert actions on many key organs involved in blood pressure and water and electrolyte balance. Many of these actions result in a physiological antagonism of angiotensin. To investigate the morphological basis of this interaction, we have mapped the distribution of receptors for atrial natriuretic peptide and angiotensin II in a number of target organs, using 125I-labelled rat atrial natriuretic peptide (99-126) and 125I-labelled [Sar1,Ile8]angiotensin II. In the kidney both atrial natriuretic peptide and angiotensin II receptors were observed overlying glomeruli, vasa recta bundles (high densities), and the outer cortex (moderate density). In the other tissues studied, atrial natriuretic peptide and angiotensin II receptors were codistributed in the adrenal zona glomerulosa, cerebral circumventricular organs including the subfornical organ, organum vasculosum of the lamina terminalis and area postrema, and the external plexiform layer of the olfactory bulb. The concurrent distribution of specific receptors for both peptides at these sites provides the basis for atrial natriuretic peptide to exert a functional antagonism of the actions of angiotensin II on blood pressure and water and electrolyte homeostasis at multiple sites.  相似文献   

9.
Angiotensin converting enzyme (ACE) is the dipeptidyl-carboxypeptidase of the renin-angiotensin system involved in the control of blood pressure and hydromineral metabolism. It converts angiotensin I to angiotensin II, the biologically active octapeptide. Angiotensin converting enzyme-like activity has been demonstrated in a wide range of vertebrates. The presence of ACE was investigated in tissues of two amphibian species, the frog Rana esculenta and the toad Xenopus laevis. ACE activities were determined by specific substrate hydrolysis in gut, gonads, lung, kidney, heart, liver, skin, erythrocytes, and muscle homogenates and plasma by means of high performance liquid chromatography. Significant ACE activity was found in gut, gonads, lung and kidney, while that in heart, liver, skin, erythrocytes, muscle, and plasma was very low. Testis of toad contained the highest ACE activity, while that in erythrocytes of male and female frogs was notable.  相似文献   

10.
We investigated whether angiotensin II (Ang II) and endothelin-1(ET-1) are involved in submandibular hypertrophy in response to repeated treatment with isoproterenol (ISO) in rats. The immunoreactive Ang II (IRAng II) and immunoreactive ET-1 (IRET-1) contents of ISO-induced hypertrophy were significantly higher than those of control glands. Treatment of isolated gland tissues with ISO (1 microM) or dobutamine (1 microM) caused significant increases in the IRAng II and IRET- 1 contents of the glands compared with controls. These increases were suppressed by pretreatment with enalapril (3 microM) or captopril (3 microM). Treatment with Ang II (10 microM) also caused an increase in IRET-1 content. Our findings suggest that Ang II and ET-1 are involved in the submandibular gland hypertrophy that develops in rats repeatedly treated with ISO, and that these biologically active peptides may act as growth factors. They also imply that the tissue renin-angiotensin system and Ang II specific receptors are present in the submandibular glands.  相似文献   

11.
Abstract: Secretoneurin is a 33-amino-acid peptide produced in vivo from secretogranin II. An antiserum raised against this peptide recognizes both the free peptide and its precursors. By HPLC and radioimmunoassay we characterized the immunoreactive molecules and determined the levels of immunoreactivity in various rat organs. In adrenal medulla and to a lesser degree in the anterior pituitary processing of secretogranin II to secretoneurin was very limited, whereas in all other organs studied (brain, intestine, endocrine pancreas, thyroid gland, and posterior pituitary) a high degree of processing was apparent. Thus, practically all of the immunoreactivity was present as free secretoneurin. This was also true for serum. When the total amount of secretoneurin immunoreactivity was calculated for the various organs, the largest pools in descending order were in the intestine, CNS, anterior pituitary, pancreas, and adrenal gland. This makes it likely that secretoneurin in serum is mainly derived from the intestine. The high degree of processing of secretogranin II in most organs is consistent with the concept that this protein acts as a precursor of a functional peptide, i.e., secretoneurin.  相似文献   

12.
Angiotensin II (AngII) is the biologically active peptide of the renin-angiotensin system (RAS). Tissue- based, local RAS has been identified in the prostate, testis, epididymis and coagulating glands. Experimental and clinical studies have consistently shown that myocardial infarction (MI) is associated with activation of the systemic RAS with increased concentration of angiotensin peptides in the blood and changes in expression of angiotensin receptors (AT). Changes in angiotensin receptors in the renal and cardiovascular system after MI are well recognized, but the effects of MI influence on changes in other tissue like the prostate gland are unknown. In the present study, we investigated the effect of myocardial infarction on angiotensin receptor protein and mRNA expression in the rat prostate gland. MI model was established in Wistar rats by ligating the left coronary artery (modified Selye method). The levels of AT1a-b and AT2 receptor mRNAs and proteins were measured in the rat prostate. Our study demonstrates tissue-specific changes in AT1a-b and AT2 receptor expression after myocardial infarction. The results show that MI has a strong influence on the expression of angiotensin receptor type AT1 in the prostate at the protein and mRNA level.  相似文献   

13.
Angiotensin II labeled with a single atom of 125I per moleculed had been shown to retain 80% of the original specific activity of the radioiodinated peptide during storage for up to 5 months. This phenomenon is attributable to destruction of the angiotensin II molecule during the radioactive decay process, so that the immunoreactive peptide effectively desappears at the same rate as the incorporated 125I atom. For this reason, monoiodinated angiotensin II can be employed for prolonged periods in radioimmunoassay and binding studies, with retention of high specific activity in the absence of formation of free iodide or interfering peptide fragments.  相似文献   

14.
A novel nonapeptide with neurotensin-like immunoreactivity was isolated from pepsin-treated human plasma by dialysis, ion-exchange chromatography and high performance reversed-phase liquid chromatography. The amino acid sequence was determined by automated gas-phase sequence analysis as Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe-Leu. Sequence homology with human serum albumin and with the biologically active peptides neurotensin and angiotensin is demonstrated. The name proposed for this peptide is kinetensin.  相似文献   

15.
Angiotensin II is synthesized locally in various tissues. However, the role of interstitial angiotensin II in the regulation of regional metabolism and tissue perfusion has not as yet been clearly defined. We characterized the effect of interstially applied angiotensin II in abdominal subcutaneous adipose tissue of young, normal-weight, healthy men (n = 8) and women (n = 6) using the microdialysis technique. Adipose tissue was perfused with 0.01, 0.1, and 1 micro M angiotensin II. Dialysate concentrations of ethanol, glycerol, glucose, and lactate were measured to assess changes in blood flow (ethanol dilution technique), lipolysis, and glycolysis, respectively. Baseline ethanol ratio and dialysate lactate were both significantly higher, whereas dialysate glucose was significantly lower in men vs. women. In men, ethanol ratio and dialysate glucose, lactate and glycerol did not change significantly during perfusion with angiotensin II. In women, however, angiotensin II induced a significant increase in ethanol ratio and dialysate lactate and a decrease in dialysate glucose close to values found for men and this response was almost maximal at the lowest angiotensin II concentration used. Dialysate glycerol did not change significantly. We conclude that baseline blood flow and glucose supply and metabolism is significantly higher in women than in men. In men, interstitial Ang II has only a minimal effect on adipose tissue blood flow and metabolism. In women, however, a high physiological concentration of interstitial angiotensin II can reduce blood flow down to values found in men. This is associated with an impaired glucose supply and metabolism. Additionally, Ang II inhibits lipolysis.  相似文献   

16.
In the smallest biologically active fragment of angiotensin or a 3-8 hexapeptide the C-terminal was substituted by isoleucine residue. It proved to be the smallest potent antagonist of angiotensin II so far reported.  相似文献   

17.
A high performance liquid chromatography (HPLC) method is described for the separation of angiotensin (Ang) peptides and their subsequent quantification by radioimmunoassay in plasma and cerebrospinal fluid (CSF). The use of the ion-pair solvent heptafluorobutyric acid in gradient HPLC achieves baseline resolution of Ang I, Ang II, and the C-terminal fragments des-[Asp1]-Ang I, des-[Asp1]-Ang II, des-[Asp1,Arg2]-Ang II and des-[Asp1,Arg2,Val3]-Ang II in approximately 25 min. Recovery of synthetic Ang standards after phenylsilica extraction and HPLC separation was greater than 70% for each peptide in both plasma and CSF. Ang I and Ang II were shown to be the major immunoreactive Ang components in plasma, and Ang II, des-[Asp1,Arg2]-Ang II and des-[Asp1,Arg2,Val3]-Ang II in CSF.  相似文献   

18.
Age-related hypertrophy of adipose tissue has been associated with a significant decrease in the number of angiotensin II receptors. The aim of this study was to investigate the characteristics of angiotensin II receptors in hypertrophic adipose tissue in animal obesity model using rats postnatally treated with monosodium glutamate. Angiotensin II is known to induce hypertrophy in several tissues of the cardiovascular system and might do the same in fat tissue. The expression and binding properties of angiotensin II AT(1) receptors in epididymal fat tissue of adult rats were studied using membrane-binding, RT-PCR, and immunoblotting. The amount of AT(1) receptor mRNA did not differ significantly between obese and control rats. Despite that glutamate-treated rats displayed approximately 4-times more AT(1) receptor immunoreactive protein content in fat tissue cell membranes than the controls did. In contrast, binding experiments showed a significant (40.3 +/- 6.2 %) decrease of (125)I-Sar(1)-Ile(8)-angiotensin II-binding to fat tissue cell membranes in obese rats compared to controls. In conclusion, the present study provides evidence for the low binding properties associated with an accumulation of AT(1) receptor protein in cell membranes of the fat tissue of rats with glutamate-induced obesity. Discrepancies among angiotensin II-binding, AT(1) receptor protein, and AT(1) receptor mRNA levels indicate a possible defect in the receptor protein, which remains to be identified. The results obtained support a role of angiotensin II and AT(1) receptors in the pathogenesis of obesity.  相似文献   

19.
Heme oxygenase (HO) is a heme-catabolizing enzyme that converts heme into biliverdin, iron, and carbon monoxide. HO-1, an inducible form of HO, is thought to act as an endogenous antioxidant defense mechanism. To determine whether chronic administration of angiotensin II affects HO-1 expression in the heart, expression and localization of HO-1 were investigated in the heart of rats receiving angiotensin II infusion (0.7 mg. kg(-1). day(-1)) via osmotic minipump for up to 7 days. Angiotensin II induced formation of granulation tissue, characterized by myofibroblast proliferation, fibrous deposition, and inflammatory cell migration. Angiotensin II also upregulated cardiac HO-1 expression. Immunohistochemistry revealed that HO-1 was intensively expressed in the granulation tissue. The selective AT(1)-receptor antagonist, losartan, completely, but hydralazine only partially, suppressed angiotensin II-induced granulation tissue formation and HO-1 upregulation. Chronic norepinephrine infusion (2.8 mg. kg(-1). day(-1)) did not induce granulation tissue formation or HO-1 upregulation. Our data suggest that angiotensin II upregulates cardiac HO-1 expression in the newly formed inflammatory lesion, which may represent an adaptive response to angiotensin II-induced cardiac damage.  相似文献   

20.
Our aim was to determine whether the expression of endothelin-converting enzyme in human tissues would correlate with the distribution of its substrate, big endothelin-1, and its product, the mature peptide. Site-directed antisera raised against the conserved C-terminus of the mammalian enzyme were used to measure the immunoreactive enzyme in microsomal fractions prepared from tissue homogenates and to localize staining to the endothelial cells lining large conduit and smaller resistance vessels within cardiac, adrenal, respiratory and brain tissue. The activity of endothelin-converting enzyme was measured and characterized in isolated endothelial cells. This pattern of staining in the vascular endothelium paralleled that of mature endothelin and big endothelin-1, and these peptides were detectable by radioimmunoassay in all tissues examined. Immunoreactive endothelin-converting enzyme localized to other cell types, including bronchial epithelial cells, and to fibres within the glial limitans, neuronal processes and cell bodies of the cerebral cortex. Although perivascular astrocytes in the subcortical white matter displayed intense endothelin-converting enzyme-like immunoreactivity, endothelin staining was not detected. The results suggest that endothelin-converting enzyme has a ubiquitous distribution within the human vascular endothelium and is positioned to catalyse the conversion of big endothelin-1 to the biologically active endothelin-1, which on release may contribute to the maintenance of basal tone in humans. Endothelin-converting enzyme localized to epithelial cells in peripheral tissues or astrocytes within the brain may be upregulated in pathophysiological conditions in which endothelin levels are increased and could represent a further target for therapeutic intervention by enzyme inhibitors. © 1998 Chapman & Hall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号