首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophage RB69 encodes a replicative B-family DNA polymerase (RB69 gp43) with an associated proofreading 3' exonuclease. Crystal structures have been determined for this enzyme with and without DNA substrates. We previously described the mutation rates and kinds of mutations produced in vivo by the wild-type (Pol(+) Exo(+)) enzyme, an exonuclease-deficient mutator variant (Pol(+) Exo(-)), mutator variants with substitutions at Tyr(567) in the polymerase active site (Pol(M) Exo(+)), and the double mutator Pol(M) Exo(-). Comparing the mutational spectra of the Pol(+) Exo(-) and Pol(+) Exo(+) enzymes revealed the patterns and efficiencies of proofreading, while Tyr(567) was identified as an important determinant of base-selection fidelity. Here, we sought to determine how well the fidelities of the same enzymes are reflected in vitro. Compared to their behavior in vivo, the three mutator polymerases exhibited modestly higher mutation rates in vitro and their mutational predilections were also somewhat different. Although the RB69 gp43 accessory proteins exerted little or no effect on total mutation rates in vitro, they strongly affected mutation rates at many specific sites, increasing some rates and decreasing others.  相似文献   

2.
3.
Eight proteins encoded by bacteriophage T4 are required for the replicative synthesis of the leading and lagging strands of T4 DNA. We show here that active T4 replication forks, which catalyze the coordinated synthesis of leading and lagging strands, remain stable in the face of dilution provided that the gp44/62 clamp loader, the gp45 sliding clamp, and the gp32 ssDNA-binding protein are present at sufficient levels after dilution. If any of these accessory proteins is omitted from the dilution mixture, uncoordinated DNA synthesis occurs, and/or large Okazaki fragments are formed. Thus, the accessory proteins must be recruited from solution for each round of initiation of lagging-strand synthesis. A modified bacteriophage T7 DNA polymerase (Sequenase) can replace the T4 DNA polymerase for leading-strand synthesis but not for well coordinated lagging-strand synthesis. Although T4 DNA polymerase has been reported to self-associate, gel-exclusion chromatography displays it as a monomer in solution in the absence of DNA. It forms no stable holoenzyme complex in solution with the accessory proteins or with the gp41-gp61 helicase-primase. Instead, template DNA is required for the assembly of the T4 replication complex, which then catalyzes coordinated synthesis of leading and lagging strands in a conditionally coupled manner.  相似文献   

4.
Zhuang Z  Berdis AJ  Benkovic SJ 《Biochemistry》2006,45(26):7976-7989
In bacteriophage T4, a clamp loading pathway that utilizes the T4 clamp loader (gp44/62) and ATP hydrolysis initially to form a complex with the clamp (gp45) has been demonstrated, followed by interaction with DNA and closing of the clamp. However, the recent observation that gp45 exists as an opened form in solution raises the possibility of other pathways for clamp loading. In this study, an alternative clamp loading sequence is evaluated in which gp44/62 first recognizes the DNA substrate and then sequesters the clamp from solution and loads it onto DNA. This pathway differs in terms of the initial formation of a gp44/62-DNA complex that is capable of loading gp45. In this work, we demonstrate ATP-dependent DNA binding by gp44/62. Among various DNA structures that were tested, gp44/62 binds specifically to primer-template DNA but not to single-stranded DNA or blunt-end duplex DNA. By tracing the dynamic clamp closing with pre-steady-state FRET measurements, we show that the clamp loader-DNA complex is functional in clamp loading. Furthermore, pre-steady-state ATP hydrolysis experiments suggest that 1 equiv of ATP is hydrolyzed when gp44/62 binds to DNA, and additional ATP hydrolysis is associated with the completion of the clamp loading process. We also investigated the detailed kinetics of binding of MANT-nucleotide to gp44/62 through stopped-flow FRET and demonstrated a conformational change as the result of ATP, but not ADP binding. The collective kinetic data allowed us to propose and evaluate a sequence of steps describing this alternative pathway for clamp loading and holoenzyme formation.  相似文献   

5.
T L Capson  S J Benkovic  N G Nossal 《Cell》1991,65(2):249-258
T4 DNA polymerase, the 44/62 and 45 polymerase accessory proteins, and 32 single-stranded DNA-binding protein catalyze ATP-dependent DNA synthesis. Using DNA primers with cross-linkable residues at specific positions, we obtained structural data that reveal how these proteins assemble on the primer-template. With the nonhydrolyzable ATP analog ATP gamma S, assembly of the 44/62 and 45 proteins on the primer requires 32 protein but not polymerase. ATP hydrolysis changes the position and intensity of cross-linking to each of the accessory proteins and allows cross-linking of polymerase. Our data indicate that the initial binding of the three accessory proteins and ATP to a 32 protein-covered primer-template is followed by ATP hydrolysis, binding of polymerase, and movement of the accessory proteins to yield a complex capable of processive DNA synthesis.  相似文献   

6.
The bacteriophage T4 genome is believed to encode all of the proteins needed for the replication of its own DNA. Included among these proteins are the "polymerase accessory proteins", the products of T4 genes 44, 62 and 45. The first two of these genes specify the synthesis of the 44/62 protein complex, which is here shown to be a DNA-dependent ATPase, hydrolyzing either ATP or dATP to the corresponding nucleoside diphosphate and releasing inorganic phosphate. This nucleotide hydrolysis is greatly stimulated by addition of the gene 45 protein and by single-stranded DNA termini. A rapid micro DNA-cellulose assay is introduced and used to measure accessory protein binding to the complex of T4 gene 32 protein and single-stranded DNA. In the presence of ATP, the 44/62 protein binds to this complex but not to naked DNA, while the 45 protein requires both the 32 protein and the 44/62 protein for detectable binding.  相似文献   

7.
DNA synthesis by phage T4 DNA polymerase is arrested at specific sequences in single-stranded DNA templates. To determine whether or not T4 DNA polymerase accessory proteins 32, 44, 45 and 62 eliminated recognition of these arrest sites, unique primer-templates were constructed in which DNA synthesis began at a DNA primer located at different distances from palindromic and nonpalindromic arrest sites. Nucleotide positions that caused polymerase to pause or leave the template were identified by sequence analysis of 5'-end labeled nascent DNA chains. Stable hairpin structures at palindromic sequences were confirmed by acetylation of single-stranded sequences with bromoacetaldehyde. Our results confirmed that these T4 DNA polymerase accessory proteins stimulated T4 DNA polymerase activity and processivity on natural as well as homopolymer primer-templates. However, they did not alter recognition of DNA synthesis arrest sites by T4 DNA polymerase. Extensive DNA synthesis resulted from an increased rate of translocation and/or processivity to the same extent over all DNA sequences.  相似文献   

8.
Bacteriophage T4 genes 32, 41, 44, 45, 56, and 62 are essential to DNA replication. Amber mutants (suppressed by su+1, su+2, or su+3 bacteria) in these genes were examined for any mutator or antimutator effects on the reversion of a transition mutation. In every case except for mutations in gene 56, elevated or lowered error frequencies were observed. These results indicate the importance of all of the replicative proteins in the determination of error frequency.  相似文献   

9.
The DNA polymerase holoenzyme of bacteriophage T4 contains, besides the DNA polymerase itself (the gene 43 protein), a complex of the protein products of T4 genes 44 and 62 (a DNA-dependent ATPase) and of gene 45. Together, the 44/62 and 45 proteins form an ATP-dependent "sliding clamp" that holds a moving DNA polymerase molecule at the 3' terminus of a growing DNA chain. We have used a unique DNA fragment that forms a short hairpin helix with a single-stranded 5' tail (a "primer-template junction") to map the binding sites for these polymerase accessory proteins by DNA footprinting techniques. In the absence of the DNA polymerase, the accessory proteins protect from DNase I cleavage 19-20 nucleotides just behind the 3' end of the primer strand and 27-28 nucleotides on the complementary portion of the template strand. Detection of this DNA-protein complex requires the 44/62 and 45 proteins plus the nonhydrolyzable ATP analogue adenosine 5'-O-(thiotriphosphate). The complex is not detected in the presence of ATP. We suggest that ATP hydrolysis by the 44/62 protein normally activates the accessory proteins at a primer-template junction, permitting the DNA polymerase to bind and thus form the complete holoenzyme. However, when the polymerase is missing, as in these experiments, ATP hydrolysis is instead followed by a release (or loosening) of the accessory protein complex.  相似文献   

10.
We have used DNA footprinting techniques to analyze the interactions of five DNA replication proteins at a primer-template junction: the bacteriophage T4 DNA polymerase (the gene 43 protein), its three accessory proteins (the gene 44/62 and 45 proteins), and the gene 32 protein, which is the T4 helix-destabilizing (or single-stranded DNA-binding) protein. The 177-nucleotide-long DNA substrate consisted of a perfect 52-base pair hairpin helix with a protruding single-stranded 5' tail. As expected, the DNA polymerase binds near the 3' end of this molecule (at the primer-template junction) and protects the adjacent double-stranded region from cleavage. When the gene 32 protein binds to the single-stranded tail, it reduces the concentration of the DNA polymerase required to observe the polymerase footprint by 10-30-fold. Periodic ATP hydrolysis by the 44/62 protein is required to maintain the activity of the DNA polymerase holoenzyme (a complex of the 43, 44/62, and 45 proteins). Footprinting experiments demonstrate the formation of a weak complex between the DNA polymerase and the gene 45 protein, but there is no effect of the 44/62 protein or ATP on this enlarged footprint. We propose a model for holoenzyme function in which the complex of the three accessory proteins uses ATP hydrolysis to keep a moving polymerase tightly bound to the growing 3' end, providing a "clock" to measure polymerase stalling.  相似文献   

11.
M. E. Santos  J. W. Drake 《Genetics》1994,138(3):553-564
Bacteriophage T4 encodes most of the genes whose products are required for its DNA metabolism, and host (Escherichia coli) genes can only infrequently complement mutationally inactivated T4 genes. We screened the following host mutator mutations for effects on spontaneous mutation rates in T4: mutT (destruction of aberrant dGTPs), polA, polB and polC (DNA polymerases), dnaQ (exonucleolytic proofreading), mutH, mutS, mutL and uvrD (methyl-directed DNA mismatch repair), mutM and mutY (excision repair of oxygen-damaged DNA), mutA (function unknown), and topB and osmZ (affecting DNA topology). None increased T4 spontaneous mutation rates within a resolving power of about twofold (nor did optA, which is not a mutator but overexpresses a host dGTPase). Previous screens in T4 have revealed strong mutator mutations only in the gene encoding the viral DNA polymerase and proofreading 3'-exonuclease, plus weak mutators in several polymerase accessory proteins or determinants of dNTP pool sizes. T4 maintains a spontaneous mutation rate per base pair about 30-fold greater than that of its host. Thus, the joint high fidelity of insertion by T4 DNA polymerase and proofreading by its associated 3'-exonuclease appear to determine the T4 spontaneous mutation rate, whereas the host requires numerous additional systems to achieve high replication fidelity.  相似文献   

12.
N G Nossal 《FASEB journal》1992,6(3):871-878
The DNA replication system of bacteriophage T4 serves as a relatively simple model for the types of reactions and protein-protein interactions needed to carry out and coordinate the synthesis of the leading and lagging strands of a DNA replication fork. At least 10 phage-encoded proteins are required for this synthesis: T4 DNA polymerase, the genes 44/62 and 45 polymerase accessory proteins, gene 32 single-stranded DNA binding protein, the genes 61, 41, and 59 primase-helicase, RNase H, and DNA ligase. Assembly of the polymerase and the accessory proteins on the primed template is a stepwise process that requires ATP hydrolysis and is strongly stimulated by 32 protein. The 41 protein helicase is essential to unwind the duplex ahead of polymerase on the leading strand, and to interact with the 61 protein to synthesize the RNA primers that initiate each discontinuous fragment on the lagging strand. An interaction between the 44/62 and 45 polymerase accessory proteins and the primase-helicase is required for primer synthesis on 32 protein-covered DNA. Thus it is possible that the signal for the initiation of a new fragment by the primase-helicase is the release of the polymerase accessory proteins from the completed adjacent fragment.  相似文献   

13.
14.
The T4 gp59 protein is the major accessory protein of the phage's replicative DNA helicase, gp41. gp59 helps load gp41 at DNA replication forks by promoting its assembly onto single-stranded (ss) DNA covered with cooperatively bound molecules of gp32, the T4 single-strand DNA binding protein (ssb). A gp59-gp32-ssDNA ternary complex is an obligatory intermediate in this helicase loading mechanism. Here, we characterize the properties of gp59-gp32-ssDNA complexes and reveal some of the biochemical interactions that occur within them. Our results indicate the following: (i) gp59 is able to co-occupy ssDNA pre-saturated with either gp32 or gp32-A (a truncated gp32 species lacking interactions with gp59); (ii) gp59 destabilizes both gp32-ssDNA and (gp32-A)-ssDNA interactions; (iii) interactions of gp59 with the A-domain of gp32 alter the ssDNA-binding properties of gp59; and (iv) gp59 organizes gp32-ssDNA versus (gp32-A)-ssDNA into morphologically distinct complexes. Our results support a model in which gp59-gp32 interactions are non-essential for the co-occupancy of both proteins on ssDNA but are essential for the formation of structures competent for helicase assembly. The data argue that specific "cross-talk" between gp59 and gp32, involving conformational changes in both, is a key feature of the gp41 helicase assembly pathway.  相似文献   

15.
An in vitro replication system reconstituted from six purified T4 bacteriophage proteins, each of which is essential for T4 DNA replication in vivo, requires ATP. Because of the complexity of the complete system, we examine in this report the involvement of ATP in two subsystems of the overall DNA synthesis reaction. One subsystem consists of the T4 DNA polymerase (gene 43 protein) and its "accessory proteins," the gene 44/62 and 45 products. An even simpler subsystem consists of the gene 44/62 and 45 proteins alone, which together have a DNA-dependent ATPase activity. The combination of the 44/62 and 45 proteins hydrolyze ATP to ADP and inorganic phosphate in the presence of DNA. These essential accessory proteins have been previously shown to increase T4 DNA polymerase activity on primed, single-stranded DNA templates. In this report we use nucleotide analogues to demonstrate that this polymerase stimulation requires hydrolysis of the beta,gamma-phosphate bond of ATP. However, our data suggest that the mechanism of accessory protein stimulation is such that less than 1 ATP molecule need be hydrolyzed per 10 deoxyribonucleotides incorporated by the DNA polymerase into DNA.  相似文献   

16.
The bacteriophage T4 DNA polymerase holoenzyme, consisting of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62), is loaded onto DNA in an ATP-dependent, multistep reaction. The trimeric, ring-shaped gp45 is loaded onto DNA such that the DNA passes through the center of the ring. gp43 binds to this complex, thereby forming a topological link with the DNA and increasing its processivity. Using stopped-flow fluorescence-resonance energy transfer, we have investigated opening and closing of the gp45 ring during the holoenzyme assembly process. Two amino acids that lie on opposite sides of the gp45 subunit interface, W91 and V162C labeled with coumarin, were used as the fluorescence donor and acceptor, respectively. Free in solution, gp45 has two closed subunit interfaces with W91 to V162-coumarin distances of 19 A and one open subunit interface with a W91 to V162C-coumarin distance of 40 A. Making the assumption that the distance across the two closed subunit interfaces is unchanged during the holoenzyme assembly process, we have found that the distance across the open subunit interface is first increased to greater than 45 A and is then decreased to 30 A during a 10-step assembly mechanism. The gp45 ring is not completely closed in the holoenzyme complex, consistent with previous evidence suggesting that the C-terminus of gp43 is inserted into the gp45 subunit interface. Unexpectedly, ATP-hydrolysis events are coupled to only a fraction of the total distance change, with conformational changes linked to binding DNA and gp43 coupled to the majority of the total distance change. Using the nonhydrolyzable ATP analogue ATP-gamma-S results in formation of a nonproductive gp45 x gp44/62 complex; however, adding an excess of ATP to this nonproductive complex results in rapid ATP/ATP-gamma-S exchange to yield a productive gp45 x gp44/62 complex within seconds.  相似文献   

17.
Bacteriophage T4 gene 41 protein is one of the two phage proteins previously shown to be required for the synthesis of the pentaribonucleotide primers which initiate the synthesis of new chains in the T4 DNA replication system. We now show that a DNA helicase activity which can unwind short fragments annealed to complementary single-stranded DNA copurifies with the gene 41 priming protein. T4 gene 41 is essential for both the priming and helicase activities, since both are absent after infection by T4 phage with an amber mutation in gene 41. A complete gene 41 product is also required for two other activities previously found in purified preparations of the priming activity: a single-stranded DNA-dependent GTPase (ATPase) and an activity which stimulates strand displacement synthesis catalyzed by T4 DNA polymerase, the T4 gene 44/62 and 45 polymerase accessory proteins, and the T4 gene 32 helix-destabilizing protein (five-protein reaction). The 41 protein helicase requires a single-stranded DNA region adjoining the duplex region and begins unwinding at the 3' terminus of the fragment. There is a sigmoidal dependence on both nucleotide (rGTP, rATP) and protein concentration for this reaction. 41 Protein helicase activity is stimulated by our purest preparation of the T4 gene 61 priming protein, and by the T4 gene 44/62 and 45 polymerase accessory proteins. The direction of unwinding is consistent with the idea that 41 protein facilitates DNA synthesis on duplex templates by destabilizing the helix as it moves 5' to 3' on the displaced strand.  相似文献   

18.
In this paper we report a detailed enzymatic characterization of the interaction of the polymerase accessory protein complex of the T4 DNA replication system with the various nucleic acid cofactors that activate the ATPase of the complex. We show that the ATPase activity of the T4 coded gene 44/62 protein complex is stimulated synergistically by binding of DNA and T4 gene 45 protein and that the level of ATPase activation appears to be directly correlated with the binding of nucleic acid cofactor. Binding of any partially or completely single-stranded DNA to the complete accessory protein complex increases the catalytic activity (as measured by Vmax) while decreasing the binding affinity for the ATP substrate. While single-stranded DNA is a moderately effective cofactor, we find that the optimal nucleic acid-binding site for the complex is the primer-template junction, rather than single-stranded DNA ends as previously reported in the literature. Gene 45 protein plays an essential role in directing the specificity of binding to primer-template sites, lowering the Km for primer-template sites almost 1000-fold, and increasing Vmax 100-fold, compared with the analogous values for gene 44/62 protein alone. The most effective primer-template site for binding and enzymatic activation has the physiologically relevant recessed 3'-OH configuration and an optimal size in excess of 18 base pairs of duplex DNA. We find that the chemical nature of the primer terminus (i.e. 3'-OH or 3'-H) does not affect the extent of ATPase activation and that binding of the polymerase accessory protein complex to DNA cofactors is salt concentration dependent but appreciably less so when the activating DNA is a primer-template junction. Finally, we show that the gene 32 protein (T4 coded single-stranded DNA-binding protein) can compete with the polymerase accessory protein complex for single-stranded DNA but not for the primer-template junction activation sites. The implications of these results for the structure and function of the polymerase accessory protein complex within the T4 DNA replication system are discussed.  相似文献   

19.
The fidelity with which wild type T4 DNA polymerase copies phi X174 amber 3 plus strand DNA at position 587 in vitro has been measured. Synthesis is initiated by hybridizing to the template a HaeIII restriction fragment whose 3'-OH terminus is 83 nucleotides from the amber 3 site. Based on gel electrophoresis of product DNA molecules and genetic marker rescue data, T4 DNA polymerase copies significantly beyond the mutant site. Transfection analysis shows that the A X T leads to G X C mutation at position 587 occurs 10- to 100-fold less frequently with T4 DNA polymerase than with E. coli DNA polymerase I. The aberrant incorporation of cytosine opposite adenine at position 587 by the T4 polymerase alone is occurring at a frequency not greater than about 10(-7) which, for this particular locus, may be similar to the fidelity exhibited by the T4 accessory proteins plus the polymerase comprising the replication complex. A comparison of the accuracy of mutator L56 and antimutator L141 T4 DNA polymerases relative to wild type shows at most a 2- to 4-fold decrease and increase, respectively, in fidelity. When compared to 10- to 1000-fold effects on mutation frequencies that these same mutant alleles have in vivo, these results suggest that the wide range in expression of mutator and antimutator phenotypes in vivo may be dependent on an abnormal interaction of the aberrant DNA polymerases with other protein components of the replication complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号