首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous experiments have demonstrated that positive selection markers recombined into the Epstein-Barr virus (EBV) genome enable the isolation of transforming or nontransforming mutant EBV recombinants in EBV-negative B-lymphoma (BL) cell lines (A. Marchini, J. I. Cohen, and E. Kieff, J. Virol. 66:3214-3219, 1992; F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). However, virus has been recovered from a BL cell clone (BL41) infected with an EBV recombinant in only one instance (Wang et al., J. Virol. 65:1701-1709, 1991). We now compare the utility of four EBV-negative BL lines, BJAB, BL30, BL41, and Loukes, for isolating EBV recombinants and supporting their subsequent replication. Transforming or nontransforming EBV recombinants carrying a simian virus 40 promoter-hygromycin phosphotransferase (HYG) cassette were cloned by selecting newly infected BL cells for HYG expression. Most of the infected BL clones contained EBV episomes, and EBV gene expression was largely restricted to EBNA-1. Although the BJAB cell line was a particularly good host for isolating EBV recombinants (Marchini et al., J. Virol. 66:3214-3219, 1992), it was largely nonpermissive for virus replication, even in response to heterologous expression of the BZLF1 immediate-early transactivator. In contrast, approximately 50% of infected BL41, BL30, or Loukes cell clones responded to lytic cycle induction. Frequently, a substantial fraction of infected cells expressed the late lytic infection viral protein, gp350/220, and released infectious virus. Since BL cells do not depend on EBV for growth, transforming and nontransforming EBV recombinants were isolated and passaged.  相似文献   

2.
We found that spontaneous and 12-0-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus (EBV) reactivation occurred in short-term (ST)-cultured EBV-infected epithelial cell lines GT38 and GT39 after their establishment; however, it diminished in the long-term (LT)-cultured cells passaged for more than 2 years from ST-cultured cells. We hypothesized that the EBV reactivation may be related to the EBV DNA copy number in the cells. A higher level of EBV DNA content was detected in ST-cultured cells than in LT-cultured cells by Southern hybridization using an EBV DNA XhoI probe. Fluorescence in situ hybridization using EBV DNA BamHI W fragments showed that ST-cultured cells contained a higher EBV DNA copy number than that of LT-cultured cells. EBV DNA-negative cells were detected in small proportions in LT-cultured cells, but were undetected in ST-cultured cells. These results demonstrate that EBV genomes are not maintained stably in the cell lines, and some of them are lost in continuous passages of the cells. We discuss the mechanisms of reduction of EBV reactivation and EBV DNA in the cell lines.  相似文献   

3.
The localization of the Epstein-Barr virus (EBV) genome in chromosomes of human B-lymphoblastoid cell lines (LCLs) transformed with EBV, and the effect of EBV DNA on the level of sister chromatid exchange (SCE) in Bloom's syndrome (BS) B-LCLs, were examined with chromosomal in situ hybridization techniques using a 3H-EBV DNA probe. EBV DNA was detected in chromosomes 1–5 and 13–15 at specific G band regions in BS as well as in normal B-LCLs, regardless of SCE. Several chromosomal sites (1p31, 1q31, 4q22–24, 5q21, 13q21, 14q21) carrying EBV DNA seemed to be very characteristic in normal as well as in BS B-LCLs. There was no statistically significant difference in silver grain counts due to EBV DNA and their distribution in different chromosomes or groups among normal and BS B-LCLs with normal and high SCE. These findings strongly indicate that EBV infection did not introduce a correcting factor for BS SCE.  相似文献   

4.
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis.Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions.The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program.In this short review we touch upon aspects which are the subject of our present work.We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells.The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.  相似文献   

5.
W Siegert  T M?nch 《Blut》1981,43(5):297-305
Increased hexose uptake is a marker for viral transformation, as has been shown in non-human fibroblasts transformed by oncogenic viruses. If this phenomenon is a general expression of viral induced transformation it should also apply on different oncogenic virus-cell systems. Recently two human EBV-negative lymphoma lines were converted to a stable EBV-positive state by infection with EBV. According to their biochemical and biological properties they enable us to study events associated with EBV-transformation. We analysed the uptake of (3H) glucosamine and (3H) 2-deoxy-D-glucose into BJAB and Ramos and their EBV-converted sublines and found a clear increase of the rate of uptake of both sugars in the EBV-positive sublines. Control experiments confirmed that the increased uptake was due to alterations on the level of the hexose membrane carriers and not due to increased metabolism. The observation of increased hexose uptake in the only presented available virus transformed human cell system is a strong argument for the general importance of this transformation-associated membrane change.  相似文献   

6.
Epstein-Barr virus (EBV) and human disease: facts, opinions and problems   总被引:9,自引:0,他引:9  
Griffin BE 《Mutation research》2000,462(2-3):395-405
The human herpesvirus, Epstein-Barr virus (EBV), has classically been associated with two pathologies with frequencies approaching 100%. One of these, Burkitt's lymphoma (BL), is of B-cell origin and the other, nasopharyngeal carcinoma (NPC), is a tumour of poorly differentiated epithelial cells. More recently, EBV had been identified with frequencies from a few percent to 100% (in one case) with a variety of other malignancies. These include Hodgkin's disease (HD; where in the west, the frequency of association is about 50%), sino-nasal T-cell lymphomas, lymphoepitheliomas, some sarcomas and breast cancers, other cancers from the head and neck, and lymphomas arising in patients with immune dysfunctions. Since EBV is ubiquitous, with the vast majority of the world's population having met and seroconverted to the virus, the diversity of tumours with which it has now been associated represents a substantial health burden. In a recent IARC monograph, EBV was classified as a group 1 carcinogen. Here, the data on BL and NPC, as they relate to geographical restrictions, viral strain variation, co-factors in disease, and genetic components are reexamined. We raise the question whether in their origins, these tumours genuinely reflect distinct and independent events, as deemed at present, or may represent a response by different cell types to common extracellular factors. For example, a situation in Kenya apparently existed in the past, where both BL and NPC were observed in ethnic Africans with roughly equal frequencies; more recently, in Kenya, EBV has been identified in nearly 100% of the tumours in children with HD. We also consider tumours where the viral association is reportedly of low frequency, and offer explanations for these data, including the possibility of loss of the viral genome once malignancy has been initiated. If this phenomenon occurs as a frequent secondary event, EBV could be an even greater health risk than presently believed.  相似文献   

7.
In B-cell fractions isolated from human peripheral blood, the frequency of surface immunoglobulin-positive and of complement receptor-positive cells showed a good correlation with the frequency of EBV-binding cells, as detected by membrane fluorescence or by a quantitative bioassay for infectious virus in the absorbed supernatant fluid. There was a close relationship between all three parameters mentioned, the frequency of EBNA-positive cells 2 or 3 days after the infection, and the stimulation of cellular DNA synthesis. So-called O-cell fractions remaining after the removal of nylon adherent and E-rosetting cells contained a certain frequency of complement receptor-positive cells and absorbed EBV to a limited extent, but did not respond to EBV infection with EBNA induction or stimulation of DNA synthesis. None of the T-cell fractions absorbed EBV to a detectable extent. This includes the Tea+ fraction that contained a certain proportion of complement receptor-positive cells. It is concluded that the previously demonstrated relationship between EBV receptors and complement receptors on B-lymphoblastoid lines also holds for peripheral B lymphocytes. In these cells, virus absorption is followed by an intracellular infectious process, signaled by the appearance of EBNA and cellular DNA synthesis. O cells carry complement receptors and absorb EBV to a certain extent, but do not respond with EBNA synthesis or DNA stimulation, presumably due to intracellular restrictions. T cells do not bind EBV, and the complement receptors present on some cells of the Tea+ fraction do not function as EBV receptors.  相似文献   

8.
C Alfieri  F Ghibu  J H Joncas 《CMAJ》1984,131(10):1249-1252
A new wild-type isolate of Epstein-Barr virus (EBV) was identified in follow-up studies of a case of chronic active EBV infection in an 8-year-old girl who had high titres of antibody to viral capsid antigen and early antigen (EA) (greater than 20 480 and 2560 respectively), persistent splenomegaly and abnormal immunologic features. More than 10 throat washings from this patient failed to transform cord blood lymphocytes (CBL), but at least 7 were able to induce EA in Raji cells. Supernatants from cultures of the lymphoblastoid cell line obtained by in-vitro infection of this patient''s leukocytes with the B95-8 strain of EBV revealed a herpesvirus particle when examined by electron microscopy. The same supernatants were unable to transform CBL but could induce EA in Raji cells upon superinfection. In 30 or more trials the patient''s lymphocytes never transformed spontaneously but did become positive for EBV nuclear antigen and EA in the first week of culture at least twice. Parallel studies performed on the father of the patient yielded similar results. This, then, is the first report documenting lytic activity associated with a wild-type EBV isolate.  相似文献   

9.
The EBV carrier state is almost general in men. The virus induces B lymphocyte proliferation in vitro, but this is counteracted in vivo by the immune response. Therefore, EBV-induced malignancies occur only when the immune response is impaired, e.g. in transplant recipients. The versatility of the viral gene expression strategy secures the consistent maintainance of the virus in healthy individuals. The viral proteins required for transformation render the cell immunogenic. Expression of the transforming genes leads to rejection, but these genes are not required for the maintenance of the viral genome. EBV is an important contributor for malignant transformation, even when it does not directly induce cell proliferation. Several mechanisms have been unravelled in EBV-associated tumors whereby the virus may modify the cellular phenotype and may influence the interaction of tumor cells with their microenvironment. The virus carrier state can lead to the evasion of apoptosis and can intensify the response to growth promoting signals, too.  相似文献   

10.
11.
There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells.  相似文献   

12.
A virus recovered from the saliva of a child with chronic active Epstein-Barr virus (EBV) infection for 8 years was shown to induce EBV early antigen (EBV-EA) in Raji cells and to be expressed into EBV-EA in fresh EBV-negative peripheral blood leukocytes. However, it did not replicate its DNA. Oropharyngeal epithelial cells scraped from recurrent mouth lesions were similarly positive for EBV-EA. DNA extracted from these cells and digested with BamHI contained a 6-kilobase-pair fragment homologous to BamHI fragment V and B1 EBV DNA probes. Furthermore, Southern blots of the BamHI and EcoRI digests of the DNA extracted from the cell lines of the patient (transformed with EBV strain B95-8) and of her mother (spontaneous) revealed, in addition to the expected BamHI G, H, H2, and B1 fragments used as probes, additional shorter ones of a presumably endogenous defective virus.  相似文献   

13.
14.
Complement consumption (C.C.) and C3 deposition on the cell membrane, visualized by membrane fluorescence (CMF), were compared in a collection of established human lymphoid lines. C.C. was independent of the presence of C3 receptors. A positive CMF reaction was seen only in lines that expressed C3 receptors, however. Trypsin treatment abolished CMF and EAC rosetting but had virtually no influence on C.C. EBV absorptive capacity correlated with both C3-receptor expression, as measured by EAC rosetting, and CMF but not with C.C. This is in line with our previous finding on the association of EBV and C3 receptors.  相似文献   

15.
16.
Epstein-Barr virus (EBV) from a nasopharyngeal carcinoma (NPC) hybrid cell line (NPC-KT) lacking defective viral DNA molecules superinfected Raji cells and induced EBV early antigens (EA), as did virus from P3HR-1 cells, which contained defective molecules. The EBV polypeptides induced by NPC-KT appeared to be identical to those induced by P3HR-1 virus. The ability of NPC-KT virus to induce EA was enhanced more than 10-fold by treatment of superinfected cells with dimethyl sulfoxide; however, dimethyl sulfoxide treatment did not enhance superinfection by P3HR-1 virus. After infection, DNA synthesis of both the superinfecting NPC-KT virus and the resident Raji viral genome was induced. In addition to amplified Raji EBV episomal DNA, a fused terminal fragment of NPC-KT viral DNA was detected. The detection of fused terminal DNA fragments suggests that the superinfecting virion DNA either circularizes or polymerizes after superinfection and is possibly amplified through circular or concatenated replicative intermediates.  相似文献   

17.
Chen YJ  Tsai WH  Chen YL  Ko YC  Chou SP  Chen JY  Lin SF 《PloS one》2011,6(3):e17809
Epstein-Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.  相似文献   

18.
In order to characterize the substructure of the Epstein-Barr virus determined nuclear antigen (EBNA) which is considered to have a molecular weight of 180 K in its native form, we have examined the antigenic specificity of the polypeptides obtained after denaturation of this molecule. Two procedures were employed; treatment by sodium dodecyl sulfate (SDS) and heat followed by gel electrophoresis, or denaturation by guanidine hydrochloride followed by gel filtration, which allowed us to detect a specific antigenic activity in the 50 K region, following dialysis. The denatured molecules could be reassociated into larger molecules (50 to 180 K) which retain the property of binding to fixed nuclei, as does native EBNA. These results indicate that EBNA has a polymeric structure and that 50 K subunits carry the antigenic determinants.  相似文献   

19.
20.
In situ hybridization was used to detect Epstein-Barr virus (EBV) DNA sequences under conditions where the virus DNA is replicating spontaneously and where it is induced to do so following superinfection. The in situ reaction itself is influenced by several parameters, analogous to conventional nucleic acid hybridization, consideration of which should help to optimize the designing of in situ hybridization reactions in general. Both EBV complementary RNA (cRNA) and EBV DNA synthesized in vitro can efficiently detect the virus DNA sequences in situ. The findings presented here can therefore be utilized in both the study of EBV-cell interactions and, more generally, in studies using in situ hybridization as a general approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号