首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Ipomoea stolonifera (I. stolonifera) has been used for the treatment of inflammatory diseases including rheumatism and rheumatoid arthritis in Chinese traditional medicine. However, the anti-inflammatory activity of I. stolonifera has not been elucidated. For this reason, the anti-inflammatory activity of n-butanol extract of I. stolonifera (BE-IS) was evaluated in vivo by using acute models (croton oil-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced rat pleurisy) and chronic models (cotton pellet-induced rat granuloma, and complete Freund’s adjuvant (CFA)-induced rat arthritis). Results indicated that oral administration of BE-IS significantly attenuated croton oil-induced ear edema, decreased carrageenan-induced paw edema, reduced carrageenan-induced exudates and cellular migration, inhibited cotton pellet-induced granuloma formation and improved CFA-induced arthritis. Preliminary mechanism studies demonstrated that BE-IS decreased the levels of myeloperoxidase (MPO) and malondialdehyde (MDA), increased the activity of anti-oxidant enzyme superoxide dismutase (SOD) in vivo, and reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in lipopolysaccharide-activated RAW264.7 macrophages in vitro. Results obtained in vivo and in vitro demonstrate that BE-IS has considerable anti-inflammatory potential, which provided experimental evidences for the traditional application of Ipomoea stolonifera in inflammatory diseases.  相似文献   

2.
The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.KEY WORDS: bioavailability, intranasal, nanoparticles, olanzapine, pharmacokinetic  相似文献   

3.

Background

The study was conducted to evaluate the in vitro thrombolytic activity, and in vivo analgesic, anti-inflammatory and antipyretic potentials of different hydrocarbon soluble extracts of Litsea glutinosa leaves for the first time widely used in the folkloric treatments in Bangladesh. This work aimed to create new insights on the fundamental mechanisms of the plant extracts involved in these activities.

Results

In thrombolytic activity assay, a significant clot disruption was observed at dose of 1 mg/mL for each of the extracts (volume 100 μL) when compared to the standard drug streptokinase. The n-hexane, ethyl acetate, chloroform, and crude methanolic extracts showed 32.23 ± 0.26, 37.67 ± 1.31, 43.13 ± 0.85, and 46.78 ± 0.9% clot lysis, respectively, whereas the positive control streptokinase showed 93.35 ± 0.35% disruption at the dose of 30,000 I.U. In hot plate method, the highest pain inhibitory activity was found at a dose of 500 mg/kg of crude extract (15.54 ± 0.37 sec) which differed significantly (P <0.01 and P <0.001) with that of the standard drug ketorolac (16.38 ± 0.27 sec). In acetic acid induced writhing test, the crude methanolic extract showed significant (P <0.01 and P <0.001) analgesic potential at doses 250 and 500 mg/kg body weight (45.98 and 56.32% inhibition, respectively), where ketorolac showed 64.36% inhibition. In anti-inflammatory activity test, the crude methanolic extract showed significant (P <0.001) potential at doses 250 and 500 mg/kg body weight (1.51 ± 0.04 and 1.47 ± 0.03 mm paw edema, respectively), where ketorolac showed 1.64 ± 0.05 mm edema after 3 h of carrageenan injection. In antipyretic activity assay, the crude extract showed notable reduction in body temperature (32.78 ± 0.46°C) at dose of 500 mg/kg-body weight, when the standard (at dose 150 mg/kg-body weight) exerted 33.32 ± 0.67°C temperature after 3 h of administration.

Conclusions

Our results yield that the crude hydroalcoholic extract has better effects than the other in all trials. In the context, it can be said that the leaves of L. glutinosa possess remarkable pharmacological effects, and justify its traditional use as analgesic, antipyretic, anti-inflammatory, and thrombolytic agent.  相似文献   

4.

Background

Algesia and inflammation are related with several pathological conditions. It is known that many drugs available for the treatment of these problems cause unwanted side effects. This study was aimed at evaluating acute toxicity and anti-inflammatory activity of Lampaya medicinalis Phil. (Verbenaceae) widely used in the folk medicine of Northern Chile against rheumatism, arthritis and body joints pain.

Results

Oral administration of hydroalcoholic extract (HAE) at the highest dose of 3000 mg/ Kg body weight resulted in no mortalities or evidence of significant behavioral changes. Histological examination revealed normal architecture and no significant adverse effects were observed on the liver, kidney, heart, lung or ovaries and testicles. The results suggest that the oral administration of hydroalcoholic extract (HAE) from Lampaya medicinalis did not produce any toxic effect in rats. Hydroalcoholic extract (HAE) significantly inhibited the carrageenan-induced rat paw edema in dose – response relationship, at test doses of 37.5, 75, 150 and 300 mg/Kg body weight. Maximum inhibition (61.98 ± 2.69%) was noted at 300 mg/Kg after 2 h of drug treatment carrageenan induced paw edema, whereas indomethacin produced 47.90 ± 1.16% of inhibition. The inhibitory values of edema at 3 h postcarrageenan were 31.04±0.75%, 40.51 ± 2.36%, 48.97 ± 1.14% and 56.87 ± 0.41% for 37.5, 75, 150, and 300 mg/kg of extract respectively. Indomethacin (10 mg/Kg) gave a percentage inhibition of 49.44 ± 1.44. HAE (300 and 150 mg/kg) induced an anti-inflammatory effect greater than (or comparable) with the effect of indomethacin from 2nd to 4th hours of the experiment.

Conclusions

Our results reveal for first time that compounds contained in the hydroalcoholic extract of Lampaya medicinalis Phil exert anti-inflammatory effect and the oral administration is safe and non toxic up to dose level 3000 mg/kg body weight. The anti-inflammatory activity may be associated with the presence of flavonoids. These findings also justify the traditional use of the plant for treating pain.  相似文献   

5.
A structure-guided modelling approach using COX-2 as a template was used to investigate the effect of replacing the chloro atom located at the chlorophenyl ring of amide-linked bipyrazole moieties, aiming at attaining better anti-inflammatory effect with a good safety profile. Bromo, fluoro, nitro, and methyl groups were revealed to be ideal candidates. Consequently, new bipyrazole derivatives were synthesised. The in vitro inhibitory COX-1/COX-2 activity of the synthesised compounds exhibited promising selectivity. The fluoro and methyl derivatives were the most active candidates. The in vivo formalin-induced paw edoema model confirmed the anti-inflammatory activity of the synthesised compounds. All the tested derivatives had a good ulcerogenic safety profile except for the methyl substituted compound. In silico molecular dynamics simulations of the fluoro and methyl poses complexed with COX-2 for 50 ns indicated stable binding to COX-2. Generally, our approach delivers a fruitful matrix for the development of further amide-linked bipyrazole anti-inflammatory candidates.  相似文献   

6.
Pneumocystis carinii pneumonia (PCP) is a major opportunistic infection that affects patients with human immunodeficiency virus. Although orally administered dapsone leads to high hepatic metabolism, decreasing the therapeutic index and causing severe side effects, this drug is an effective alternative for the treatment of PCP. In this context, microencapsulation for pulmonary administration can offer an alternative to increase the bioavailability of dapsone, reducing its adverse effects. The aim of this work was to develop novel dapsone-loaded chitosan microcapsules intended for deep-lung aerosolized drug delivery. The geometric particle size (D4,3) was approximately 7 μm, the calculated aerodynamic diameter (daero) was approximately 4.5 μm, and the mass median aerodynamic diameter from an Andersen cascade impactor was 4.7 μm. The in vitro dissolution profile showed an efficient dapsone encapsulation, demonstrating the sustained release of the drug. The in vitro deposition (measured by the Andersen cascade impactor) showed an adequate distribution and a high fine particles fraction (FPF = 50%). Scanning electron microscopy of the pulmonary tissues demonstrated an adequate deposition of these particles in the deepest part of the lung. An in vivo toxicity experiment showed the low toxicity of the drug-loaded microcapsules, indicating a protective effect of the microencapsulation process when the particles are microencapsulated. In conclusion, the pulmonary administration of the novel dapsone-loaded microcapsules could be a promising alternative for PCP treatment.KEY WORDS: dapsone, dry powders inhalers, in vivo toxicity, microparticles, pulmonary drug delivery  相似文献   

7.
Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.  相似文献   

8.

Background

Ventilator-induced lung injury (VILI) is characterized by increased alveolar permeability, pulmonary edema. The tyrosine kinase, c-Src, is involved in VILI but its role has not been fully elucidated. This study examined the relationship between c-Src activation and occludin levels in VILI both in vitro and in vivo.

Methods

For the in vivo study, Wistar rats were randomly divided into five groups: control (group C); normal tidal volume (group M); normal tidal volume + c-Src inhibitor (PP2) (group M + P); high tidal volume (group H); and high tidal volume + c-Src inhibitor (PP2) (group H + P). Rats in all groups but group C underwent mechanical ventilation for 4 h. For the in vitro study, MLE-12 cells pretreated with PP2 and siRNA underwent cyclic stretching at 8% or 20% for 0, 1, 2 and 4 h. The expressions of occludin, c-Src, and p-c-Src were analyzed by western blotting, hematoxylin and eosin (HE) staining, and immunofluorescence.

Results

For the in vivo study, rats in group H showed decreased occludin expression and activated c-Src compared with group C. HE staining and lung injury score showed more severe lung injury and alveolar edema in group H compared with group M and group C. Group H + P had less pulmonary edema induced by the high tidal volume ventilation. For the in vitro study, occludin expression decreased and c-Src activation increased as indicated by the phosphorylation of c-Src over time. Consistently, PP2 could restore occludin levels.

Conclusions

Mechanical ventilation can activate c-Src by phosphorylation and increase the degradation of occludin. c-Src inhibitor can ameliorate barrier function and lung injury by up-regulating occludin.  相似文献   

9.
The gold(I) mixed-ligand complexes involving O-substituted derivatives of 9-deazahypoxanthine (HLn) and triphenylphosphine (PPh3) with the general formula [Au(Ln)(PPh3)] (1–5) were prepared and thoroughly characterized by elemental analysis, FT-IR and multinuclear NMR spectroscopy, ESI+ mass spectrometry, single crystal X-ray (HL5 and complex 2) and TG/DTA analyses. Complexes 1–5 were evaluated for their in vitro antitumor activity against nine human cancer lines, i.e. MCF7 (breast carcinoma), HOS (osteosarcoma), A549 (adenocarcinoma), G361 (melanoma), HeLa (cervical cancer), A2780 (ovarian carcinoma), A2780R (ovarian carcinoma resistant to cisplatin), 22Rv1 (prostate cancer) and THP-1 (monocytic leukaemia), for their in vitro anti-inflammatory activity using a model of LPS-activated macrophages, and for their in vivo antiedematous activity by λ-carrageenan-induced hind paw edema model on rats. The results showed that the complexes 1–5 exhibit selective in vitro cytotoxicity against MCF7, HOS, 22Rv1, A2780 and A2780R, with submicromolar IC50 values for 2 against the MCF7 (0.6 µM) and HOS (0.9 µM). The results of in vitro cytotoxicity screening on primary culture of human hepatocytes (HEP220) revealed up to 30-times lower toxicity of compounds against healthy cells as compared with cancer cells. Additionally, the complexes 1–5 significantly influence the secretion and expression of pro-inflammatory cytokines TNF-α and IL-1β by a similar manner as a commercially used anti-arthritic drug Auranofin. The tested complexes also significantly influence the rate and overall volume of the edema, caused by the intraplantar application of λ-carrageenan polysaccharide to rats. Based on these promising results, the presented compounds could qualify to become feasible candidates for advanced testing as potential antitumor and anti-inflammatory drug-like compounds.  相似文献   

10.
The objective of this study was to prepare celecoxib microcrystals using different stabilizers in order to evaluate the influence of microcrystal formulation on the in vitro dissolution rate and in vivo absorption after oral administration of celecoxib in rats. Three celecoxib microcrystals (MC1, MC2, and MC3) were prepared using solvent change method. Microcrystals were evaluated for morphology, particle size, crystallinity, solubility, in vitro dissolution, and in vivo absorption in rats. Scanning electron microscopy images showed distinct differences in the morphologies and dimensions of various celecoxib microcrystals. The particle size of all microcrystals was significantly (P < 0.05) reduced relative to plain celecoxib. The DSC and XRD results revealed that MC1 retain drug crystallinity relative to control crystals, MC2, and MC3. All microcrystals showed marked increase in the drug dissolution parameters particularly MC1 that exhibited a prompt drug release and significantly (P < 0.05) higher values of % dissolution efficiency as compared to control celecoxib and the other microcrystals. The influence of microcrystals on the in vivo absorption of celecoxib was studied in rats in comparison to plain drug. The results of in vivo absorption study in rats indicated that MC1 significantly improved the rate and extent of celecoxib absorption than plain celecoxib. The mean relative bioavailability of MC1 formulation to plain celecoxib was 157.55 ± 20.18%. In conclusion, microcrystal formulation of celecoxib results not only in an enhancement of dissolution parameters but also improves the bioavailability of celecoxib in rats.KEY WORDS: celecoxib, dissolution, in vivo absorption, microcrystals, particle size  相似文献   

11.
Curcumin has diverse biological activities including antioxidant and anti-inflammatory activity. However, its clinical use for topical application is limited due to its poor aqueous solubility and thus, minimal cutaneous bioavailability. Elastic vesicles (EVs) of curcumin were prepared to improve its cutaneous bioavailability and to use it for topical anti-inflammatory effect. Ex vivo skin permeation and retention studies were performed to check if incorporation of curcumin into EVs could improve its permeation into and retention in the skin. Evaluation of acute and chronic anti-inflammatory effect was done using xylene-induced acute ear edema in mice and cotton pellet-induced chronic inflammation in rats, respectively. A significant improvement in flux (nine times) across murine skin was observed when aqueous dispersion of curcumin (flux − 0.46 ± 0.02 μg/h/cm2) was compared with curcumin-loaded EVs (flux − 4.14 ± 0.04 μg/h/cm2 ). Incorporation of these curcumin-loaded EVs into a hydrophilic ointment base resulted in higher skin retention (51.66%) in contrast to free curcumin ointment (1.64%) and a marketed formulation (VICCO® turmeric skin cream). The developed ointment showed an effect similar (p < 0.05) to the marketed diclofenac sodium ointment (Omni-gel®) in suppression of acute inflammation in mouse; a significant inhibition (28.8% versus 3.91% for free curcumin) of cotton pellet-induced chronic inflammation was also observed. Thus, curcumin-loaded EVs incorporated in hydrophilic ointment is a promising topical anti-inflammatory formulation.KEY WORDS: anti-inflammatory, curcumin, elastic vesicles, topical formulation  相似文献   

12.
A new series of co-drugs was designed based on hybridising the dihydropteroate synthase (DHPS) inhibitor sulphonamide scaffold with the COX-2 inhibitor salicylamide pharmacophore through biodegradable linkage to achieve compounds with synergistic dual inhibition of COX-2/PGE2 axis and DHPS enzyme to enhance antibacterial activity for treatment of septicaemia. Compounds 5 b, 5j, 5n and 5o demonstrated potent in vitro COX-2 inhibitory activity comparable to celecoxib. 5j and 5o exhibited ED50 lower than celecoxib in carrageenan-induced paw edoema test with % PGE2 inhibition higher than celecoxib. Furthermore, 5 b, 5j and 5n showed gastric safety profile like celecoxib. Moreover, in vivo antibacterial screening revealed that, 5j showed activity against S.aureus and E.coli higher than sulfasalazine. While, 5o revealed activity against E.coli higher than sulfasalazine and against S.aureus comparable to sulfasalazine. Compound 5j achieved the target goal as potent inhibitor of COX-2/PGE2 axis and in vivo broad-spectrum antibacterial activity against induced septicaemia in mice.  相似文献   

13.
Two new series of pyrazolo[3,4-d]pyrimidine bearing thiazolidinone moiety were designed and synthesized. The newly synthesized compounds were evaluated for their in vitro (COX-1 and COX-2) inhibitory assay. Compounds that showed promising COX-2 selectivity were further subjected to in vivo anti-inflammatory screening applying formalin induced paw edema (acute model) and cotton-pellet induced granuloma (chronic model) assays using celecoxib and diclofenac sodium as reference drugs. The histopathological and ulcerogenic potential were also determined. In vivo anti-inflammatory data showed that compounds 2, 6, 7d displayed anti-inflammatory activity higher than both references in the formalin induced paw edema model. On the other hand, compounds 2, 3d, 3e, 7b and 7d displayed anti-inflammatory activity greater than or nearly equivalent to diclofenac sodium in the cotton pellet-induced granuloma assay. Moreover, most of the tested compounds revealed good gastrointestinal safety profile. Collectively, compounds 2 and 7d were considered as promising candidates in managing both acute and chronic inflammation with safe gastrointestinal margin.  相似文献   

14.

Background

The study was conducted to evaluate the in vitro antimicrobial activity, cytotoxic, and membrane stabilization activities, and in vivo antiemetic and antipyretic potentials of ethanolic extract, n-hexane and ethyl acetate soluble fractions of Spilanthes paniculata leaves for the first time widely used in the traditional treatments in Bangladesh.

Results

In antipyretic activity assay, a significant reduction (P < 0.05) was observed in the temperature in the mice tested. At dose 400 mg/kg-body weight, the n-hexane soluble fraction showed the effect (36.7 ± 0.63°C ) as like as the standard (dose 150 mg/kg-body weight) after 5 h of administration. Extracts showed significant (P < 0.001) potential when tested for the antiemetic activity compared to the standard, metoclopramide. At dose 50 mg/kg-body weight, the standard showed 67.23% inhibition, whereas n-hexane and ethyl acetate soluble fractions showed 37.53% and 24.93% inhibition of emesis respectively at dose 400 mg/kg-body weight. In antimicrobial activity assay, the n-hexane soluble fraction (400 μg/disc) showed salient activity against the tested organisms. It exerts highest activity against Salmonella typhi (16.9 mm zone of inhibition); besides, crude, and ethyl acetate extracts showed resistance to Bacillus cereus and Bacillus subtilis, and Vibrio cholera respectively. All the extracts were tested for lysis of the erythrocytes. At the concentration of 1mg/ml, ethanol extract, and n-hexane and ethyl acetate soluble fractions significantly inhibited hypotonic solution induced lysis of the human red blood cell (HRBC) (27.406 ± 3.57, 46.034 ± 3.251, and 30.72 ± 5.679% respectively); where standard drug acetylsalicylic acid (concentration 0.1 mg/ml) showed 77.276 ± 0.321% inhibition. In case of heat induced HRBC hemolysis, the plant extracts also showed significant activity (34.21 ± 4.72, 21.81 ± 3.08, and 27.62 ± 8.79% inhibition respectively). In the brine shrimp lethality bioassay, the n-hexane fraction showed potent (LC50 value 48.978 μg/ml) activity, whereas ethyl acetate fraction showed mild (LC50 value 216.77 μg/ml) cytotoxic activity.

Conclusions

Our results showed that the n-hexane extract has better effects than the other in all trials. In the context, it can be said that the leaves of S. paniculata possess remarkable pharmacological effects, and justify its folkloric use as antimicrobial, antipyretic, anti-inflammatory, and antiemetic agent. Therefore, further research may be suggested to find possible mode of action of the plant part.  相似文献   

15.
New molecular hybrids combining benzothiophene or its bioisostere benzofuran with rhodanine were synthesized as potential dual COX-2/5-LOX inhibitors. The benzothiophene or benzofuran scaffold was linked at position -2 with rhodanine which was further linked to various anti-inflammatory pharmacophores so as to investigate the effect of such molecular variation on the anti-inflammatory activity. The target compounds were evaluated for their in vitro COX/LOX inhibitory activity. The results revealed that, compound 5h exhibited significant COX-2 inhibition higher than celecoxib. Furthermore, compounds 5a, 5f and 5i showed COX-2 inhibitory activity comparable to celecoxib. Compound 5h showed selectivity index SI = 5.1 which was near to that of celecoxib (SI = 6.7). Compound 5h displayed LOX inhibitory activity twice than that of meclofenamate sodium. Moreover, compounds 5a, 5e and 5f showed significant LOX inhibitory activity higher than that of meclofenamate sodium. Compound 5h was screened for its in vivo anti-inflammatory activity using formalin-induced paw edema and gastric ulcerogenic activity tests. The results revealed that, it showed in vivo decrease in formalin-induced paw edema volume higher than celecoxib. It also displayed gastrointestinal safety profile as celecoxib. The biological results were also consistent with the docking studies at the active sites of the target enzymes COX-2 and 5-LOX. Also, compound 5h showed physicochemical, ADMET, and drug-like properties within those considered adequate for a drug candidate.  相似文献   

16.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

17.
C16 peptide and angiopoietin-1 (Ang-1) have been found to have anti-inflammatory activity in various inflammation-related diseases. However, their combined role in acute respiratory distress syndrome (ARDS) has not been investigated yet. The objective of this study was to investigate the effects of C16 peptide and Ang-1 in combination with lipopolysaccharide (LPS)-induced inflammatory insult in vitro and in vivo. Human pulmonary microvascular endothelial cells and human pulmonary alveolar epithelial cells were used as cell culture systems, and an ARDS rodent model was used for in vivo studies. Our results demonstrated that C16 and Ang-1 in combination significantly suppressed inflammatory cell transmigration by 33% in comparison with the vehicle alone, and decreased the lung tissue wet-to-dry lung weight ratio to a maximum of 1.53, compared to 3.55 in the vehicle group in ARDS rats. Moreover, C  +  A treatment reduced the histology injury score to 60% of the vehicle control, enhanced arterial oxygen saturation (SO2), decreased arterial carbon dioxide partial pressure (PCO2), and increased oxygen partial pressure (PO2) in ARDS rats, while also improving the survival rate from 47% (7/15) to 80% (12/15) and diminishing fibrosis, necrosis, and apoptosis in lung tissue. Furthermore, when C  +  A therapy was administered 4 h following LPS injection, the treatment showed significant alleviating effects on pulmonary inflammatory cell infiltration 24 h postinsult. In conclusion, our in vitro and in vivo studies show that C16 and Ang-1 exert protective effects against LPS-induced inflammatory insult. C16 and Ang-1 hold promise as a novel agent against LPS-induced ARDS. Further studies are needed to determine the potential for C16 and Ang-1 in combination in treating inflammatory lung diseases.  相似文献   

18.
Despite decades-long existence of the Philippine stingless bee industry, the biological activity of propolis from this native bee species (Tetragonula biroi Friese) remains poorly understood and sparingly investigated. Herein, we examined the potential anti-inflammatory efficacy of Philippine stingless bee propolis using the lambda (λ)-carrageenan-induced mice model of hind paw edema. Thirty (30), six-week-old, male ICR mice were randomly assigned into three treatment groups (n=10/group) as follows: distilled water group, diclofenac sodium group (10 mg/kg), and propolis group (100 mg/kg). All treatment were administered an hour prior to the injection of the phlogistic agent. As observed at 3 h post-injection, λ-carrageenan remarkably evoked the classical signs of hind paw edema exemplified grossly by swelling and hyperemia. The ameliorative effect of propolis became apparent at the onset of 6 h post-injection with a statistically significant finding evident at the 24-h period. This gross attenuation histologically correlated to a considerable and specific reduction of the dermal edema, which mirrored those of the diclofenac sodium group. Furthermore, both propolis and diclofenac sodium significantly attenuated the λ-carrageenan-induced increase in the protein expression levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) depicting more than two-fold decrement relative to the distilled water group. Altogether, these suggest that Philippine stingless bee propolis also exhibited a promising in vivo anti-inflammatory property, which can be partly mediated through the inhibition of TNF-α.  相似文献   

19.
A new and simple method has been proposed to prepare magnetic Fe3O4-chitosan (CS) nanoparticles by cross-linking with sodium tripolyphosphate (TPP), precipitation with NaOH and oxidation with O2 in hydrochloric acid aqueous phase containing CS and Fe(OH)2, and these magnetic CS nanoparticles were used to immobilize lipase. The effects on the sequence of adding NaOH and TPP, the reaction temperature, and the ratio of CS/Fe(OH)2 were studied. TEM showed that the diameter of composite nanoparticles was about 80 nm, and that the magnetic Fe3O4 nanoparticles with a diameter of 20 nm were evenly dispersed in the CS materials. Magnetic measurement revealed that the saturated magnetisation of the Fe3O4-CS nanoparticles could reach 35.54 emu/g. The adsorption capacity of lipase onto nanoparticles could reach 129 mg/g; and the maximal enzyme activity was 20.02 μmol min−1 mg−1 (protein), and activity retention was as high as 55.6% at a certain loading amount.  相似文献   

20.
For the first-aid treatment of anaphylaxis, epinephrine (Epi) 0.3 mg intramuscular (IM) injection in the thigh is the drug of choice. Epi auto-injectors are widely recommended for anaphylaxis treatment in community settings but not necessarily carried or used as prescribed when anaphylaxis occurs. We therefore developed rapidly disintegrating sublingual tablets (RDSTs) as an alternative noninvasive dosage form. Our objective in this study was to evaluate the effect of reducing Epi particle size on its in vitro and ex vivo diffusion, with the goal of enhancing Epi sublingual absorption from Epi RDSTs. Epi particle size was reduced by top-bottom technique using a microfluidizer for one pass at 30,000 Psi. The micronized Epi crystals (Epi-MC) were characterized using Zetasizer, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Epi RDSTs were formulated and manufactured using our previously developed method. In vitro and ex vivo diffusion of Epi 10, 20, and 40 mg RDSTs and Epi-MC 10 and 20 mg RDSTs (n = 4) were evaluated using Franz cells. Epi 10 mg solution was used as a control. Mean (±standard deviation (SD)) Epi particle size was successfully reduced from 131.8 ± 10.5 to 2.5 ± 0.4 μm. Cumulative Epi diffused and influx from 40 mg Epi RDSTs and 20 mg Epi-MC RDSTs were not significantly different from each other in vitro and ex vivo (p > 0.05). Also, Epi permeability from 20 mg Epi-MC RDSTs was significantly higher than from the rest (p < 0.05). Epi-MC RDSTs improved Epi diffusion twofold and might have the potential to reduce the Epi dose needed in RDSTs by 50%.KEY WORDS: adrenaline, anaphylaxis, diffusion, epinephrine, sublingual  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号