共查询到20条相似文献,搜索用时 15 毫秒
1.
Elfie Kathrin Roedel Elisabeth Schwarz Sandip Madhav Kanse 《The Journal of biological chemistry》2013,288(10):7193-7203
Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg282↓Gln283), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg289↓Lys290). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg289↓Lys290). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases. 相似文献
2.
Suwannasing Chanyatip Buddawong Aticha Khumpune Sarawut Habuddha Valainipha Weerachatyanukul Wattana Asuvapongpatana Somluk 《Marine biotechnology (New York, N.Y.)》2021,23(5):836-846
Marine Biotechnology - Bone morphogenetic proteins (BMPs), which are members of the superfamily of transforming growth factor-β (TGF-β), are known both in vitro and in vivo for their... 相似文献
3.
目的:探讨骨形态发生蛋白( BMP-7)在前列腺癌组织中的表达及其与临床分期之间的关系.方法:应用免疫印迹法检测30例前列腺癌患者及30例前列腺良性增生患者前列腺组织中BMP-7的表达情况.结果:前列腺癌组织中BMP-7的表达显著高于前列腺良性增生组织,且BMP-7的表达随前列腺癌的临床分期、Gleason分级增高而增加.结论:BMP-7在前列腺癌中的表达明显增高,其表达量与临床分期相关,前列腺癌组织中BMP-7的表达增高提示预后不佳. 相似文献
4.
5.
骨形态发生蛋白-7的研究进展 总被引:1,自引:0,他引:1
骨形态发生蛋白是近来研究较多的一种生物因子,属于TGF—β超家族的一员。最初发现的作用是异位诱导成骨,并根据这一特点应用于临床一些难治性骨缺损疾病的治疗。其成员BMP—7作为一种细胞因子,在与体内其他因子作用的基础上,对其他多种组织的发育及功能均有重要作用。 相似文献
6.
Zhenquan Wei Richard M. Salmon Paul D. Upton Nicholas W. Morrell Wei Li 《The Journal of biological chemistry》2014,289(45):31150-31159
BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential, and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes. 相似文献
7.
Patricio A. Leyton Hideyuki Beppu Alexandra Pappas Trejeeve M. Martyn Matthias Derwall David M. Baron Rita Galdos Donald B. Bloch Kenneth D. Bloch 《PloS one》2013,8(10)
The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7‑specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2‑mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2‑mediated BMP7 signaling in PaSMCs. 相似文献
8.
骨形态发生蛋白的受体及其信号传递过程 总被引:3,自引:0,他引:3
近年来已克隆出几种Ⅰ型和Ⅱ型BMP受体.BMP受体属于TGFβ受体超家族的成员,具有丝氨酸/苏氨酸蛋白激酶活性.Ⅰ型与Ⅱ型BMP受体均可与BMP配基结合,但若执行传递信号功能,两受体需首先形成复合物.删除突变和基因剔除研究证明,ⅠA型BMP受体对动物的中胚层发育至关重要.而ⅠB型BMP受体在软骨细胞形成、成骨细胞分化以及程序化细胞死亡方面起主要作用.BMP受体信号传递分子Smad 1和Smad 5也已被克隆和鉴定,它们在BMP受体介导的功能中起重要作用. 相似文献
9.
10.
11.
12.
目的:构建真核表达载体p IRES-EGFP-BMP-2,通过Turbo Fect转染得到表达BMP-2蛋白的CHO细胞系。方法:利用逆转录PCR方法扩增获得人的BMP-2基因c DNA,克隆入p MD18-T载体,经PCR、酶切和基因测序分析等方法鉴定重组质粒;将BMP-2连入p IRES-EGFP真核表达载体中,经限制性酶切和PCR扩增鉴定重组质粒。以壳聚糖和Turbo Fect分别作为基因载体转染CHO细胞,荧光显微镜检测分析转染结果;G418筛选富集转染阳性细胞。结果:成功的克隆得到了BMP-2基因,酶切鉴定成功构建了p IRES-EGFP-BMP-2质粒。与壳聚糖组相比,Turbo Fect用量为1:1时,细胞阳性率为(31.92±1.31)%,高于壳聚糖的细胞阳性率(6.33±1.53)%。目的基因与Turbo Fect比例为1:2时转染效率为(42.90±1.10)%高于1:1的(28.59±2.38)%和1:3的(37.52±2.14)%。细胞密度调节到5×103 cells/cm2阳性细胞率可达到(44.43±3.23)%。荧光检测可见荧光阳性细胞得到稳定传代。Western Blot检测可见BMP-2蛋白表达。结论:Turbo Fect成功的介导了p IRES-EGFP-BMP-2载体转染CHO细胞,建立了稳定表达BMP-2和EGFP的CHO细胞株。 相似文献
13.
Bone morphogenetic protein (BMP) was extracted from canine bone matrix, partially purifed and tested for osteoinductivity. A radiographically and histologically detectable ectopic bone formation was induced by 6.0 mg canine (cBMP) in muscle pouch of BALB mouse at 21 days post implantation. Characterization of the cBMP preparation by a gel filtration chromatography defined that the material consisted of proteins or protein complexes with molecular weights from 4 to 120 kD. Isoelectric focusing showed that the molecules were acidic with isoelectric points of 4.6–5.6. 相似文献
14.
15.
16.
17.
Qinyan Yin Xia Wang Claire Fewell Jennifer Cameron Hanqing Zhu Melody Baddoo Zhen Lin Erik K. Flemington 《Journal of virology》2010,84(13):6318-6327
MicroRNA miR-155 is expressed at elevated levels in human cancers including cancers of the lung, breast, colon, and a subset of lymphoid malignancies. In B cells, miR-155 is induced by the oncogenic latency gene expression program of the human herpesvirus Epstein-Barr virus (EBV). Two other oncogenic herpesviruses, Kaposi''s sarcoma-associated herpesvirus and Marek''s disease virus, encode functional homologues of miR-155, suggesting a role for this microRNA in the biology and pathogenesis of these viruses. Bone morphogenetic protein (BMP) signaling is involved in an array of cellular processes, including differentiation, growth inhibition, and senescence, through context-dependent interactions with multiple signaling pathways. Alteration of this pathway contributes to a number of disease states including cancer. Here, we show that miR-155 targets the 3′ untranslated region of multiple components of the BMP signaling cascade, including SMAD1, SMAD5, HIVEP2, CEBPB, RUNX2, and MYO10. Targeting of these mediators results in the inhibition of BMP2-, BMP6-, and BMP7-induced ID3 expression as well as BMP-mediated EBV reactivation in the EBV-positive B-cell line, Mutu I. Further, miR-155 inhibits SMAD1 and SMAD5 expression in the lung epithelial cell line A549, it inhibits BMP-mediated induction of the cyclin-dependent kinase inhibitor p21, and it reverses BMP-mediated cell growth inhibition. These results suggest a role for miR-155 in controlling BMP-mediated cellular processes, in regulating BMP-induced EBV reactivation, and in the inhibition of antitumor effects of BMP signaling in normal and virus-infected cells.Despite the limited genetic content of microRNAs, their pervasive role in controlling normal and pathology-associated cellular processes has become firmly established in recent years. The importance of microRNA dysregulation in cancer is well appreciated, and a number of oncomirs and tumor suppressor microRNAs have been identified (15). As a member of the oncomir class of microRNAs, miR-155 is implicated in lymphomagenesis and a wide array of nonlymphoid tumors including breast, colon, and lung (7, 16, 24, 39, 42, 43). Despite strong evidence implicating miR-155 in cancer etiology, the mechanisms through which miR-155 supports the tumor phenotype are unclear, possibly due to limited knowledge of how predicted targets may be involved in the phenotypic properties of cancer. On the other hand, miR-155''s roles in normal immune cell development and the adaptive immune response are much better understood (33, 41). These studies have demonstrated a critical role for miR-155 in immune cell activation and maturation. This evidence and other work (8, 40) have identified critical miR-155 targets whose downregulation is required for these processes.The Epstein-Barr virus (EBV) is a human DNA tumor virus that contributes to lymphoid and epithelial cell malignancies. As a herpesvirus, a unique aspect of the EBV infection cycle is the ability to exist in either a lytic replicative state or in a latent state in which no virus is produced. Depending in part on cell background, EBV utilizes multiple forms of latency gene expression programs. True latency and type I latency are defined by the expression of no protein coding genes or by expression of the episomal replication factor EBNA1 only. Type II latency is defined by the expression of EBNA1 and the latent membrane proteins, LMP1 and/or LMP2, and is the predominant form observed in epithelial tissues. Type III latency refers to expression of the full repertoire of latency genes, which are highly tumorigenic and are capable of growth-transforming naïve resting B cells. While this form of latency is not well tolerated in immunocompetent individuals except during early stages of infection (prior to the development of adaptive immunity to these proteins), type III latency-associated lymphoid malignancies are common in immunocompromised individuals. Expression of type III latency genes in B cells mimics antigen-dependent B-cell activation, and accompanying this activation is a substantial induction of miR-155 expression (17, 20, 23, 29, 44). While it is reasonable to assume that induction of miR-155 by the type III latency program plays a role in EBV-mediated B-cell activation and oncogenesis, little is known regarding the role of miR-155 in the virus life cycle or its tumor-promoting activities.Originally identified as cytokines critically involved in the regulation of osteogenic differentiation, bone morphogenetic proteins (BMPs) are now appreciated as having critical functions in a vast number of developmental processes. Dysregulation of BMP signaling is also implicated in disease states including cancer (1). The canonical signaling pathway stimulated by BMP receptor engagement is the phosphorylation of the SMADs (mothers against decapentaplegic homologs), SMAD1, SMAD5, and SMAD9, which facilitates active transport of these mediators from the cytoplasm to the nucleus, where they bind and activate cellular promoters. While these signaling mediators are considered to have fairly redundant activities, the influence of BMP activation can have widely distinct outcomes on a particular cell depending on cellular context (3, 27). These distinctions arise from the innate low-affinity DNA binding properties of SMADs and the concordant requirement for any of a broad range of cofactors that facilitate high-affinity binding to specific sets of promoters. Using this signaling mechanism, the phenotypic outcome of BMP receptor engagement is controlled by the level of activation of other signaling pathways and SMAD binding cofactors. While activation of BMP signaling appears to contribute to some cancer types, it inhibits other cancer types by promoting growth arrest and differentiation and by inducing senescence (1). In immune cells, BMP signaling has been shown by multiple groups to inhibit lymphocyte activation, maturation, and growth (2, 6, 13, 18, 19, 37). Here, we show that miR-155 inhibits BMP signaling by targeting multiple factors in the BMP signal transduction cascade. This function may be important during immune cell activation by preventing BMP from impeding this process, it may be important for the survival of EBV type III latency associated tumors by preventing BMP-mediated viral reactivation and cell death, and it may be relevant to other cancer types by blocking growth arrest properties of BMPs. 相似文献
18.
19.
Junhong Guan Han Li Tao Lv Duo Chen Ye Yuan Shengtao Qu 《Biochemical and biophysical research communications》2013
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis. 相似文献