首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early‐life over late‐life reproduction. Studies on natural vertebrate populations show early reproduction may impair later‐life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early‐life reproduction and female age‐specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age‐specific fecundity and offspring survival, but significantly impaired a female's own later‐life survival. Despite the negative effects of early reproduction on late‐life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade‐off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later‐life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi‐)captive breeding programmes of this endangered species.  相似文献   

2.
Life history theory predicts a trade-off between fitness benefits and costs of delaying age at first reproduction (AFR). In many human populations, maternal AFR has been increasingly delayed beyond sexual maturity over the past decades, raising a question of whether any fitness benefits accrued outweigh costs incurred. To investigate the cost–benefit trade-off concerning AFR in women, we construct a theoretical model and test its predictions using pedigree data from historical Finnish mothers. The model predicts that the probability of reproductive failure (no offspring produced reaching breeding) will increase with AFR if the benefit with delaying in terms of improvement to offspring quality (i.e., breeding probability) cannot offset the cost from decline in offspring quantity. The data show that offspring quantity declined significantly with delayed reproduction, while offspring quality remained initially constant before declining when AFR was delayed beyond 30. Consistent with the theoretical model's predictions, reproductive failure probability increased markedly with delaying AFR after 30, independently of maternal socioeconomic status. Our study is the first to investigate the associations between delay in AFR after sexual maturity and changes in not only offspring quantity but also offspring quality and suggest a significant evolutionary disadvantage of delayed AFR beyond 30 for lineage persistence in a predemographic transition society.  相似文献   

3.
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

4.
The trade‐off between reproductive investment in early versus late life is central to life‐history theory. Despite abundant empirical evidence supporting different versions of this trade‐off, the specific trade‐off between age at first reproduction (AFR) and age at last reproduction (ALR) has received little attention, especially in long‐lived species with a pronounced reproductive senescence such as humans. Using genealogical data for a 19th‐century Swiss village, we (i) quantify natural selection acting on reproductive timing, (ii) estimate the underlying additive genetic (co)variances, and (iii) use these to predict evolutionary responses. Selection gradients were computed using multiple linear regression, and the additive genetic variance–covariance matrix was estimated using a restricted maximum‐likelihood animal model. We found strong selection for both an early AFR and a late ALR, which resulted from selection for an earlier and longer reproductive period (RP, i.e., ALR‐AFR). Furthermore, postponing AFR shortened RP in both sexes, but twice as much in women. Finally, AFR and ALR were strongly and positively genetically correlated, which led to a considerable reduction in the predicted responses to selection, or even rendered them maladaptive. These results provide evidence for strong genetic constraints underlying reproductive timing in humans, which may have contributed to the evolution of menopause.  相似文献   

5.
Adversity early in life can shape the reproductive potential of individuals through negative effects on health and life span. However, long‐lived populations with multiple reproductive events may present alternative life history strategies to optimize reproductive schedules and compensate for shorter life spans. Here, we quantify the effects of major hurricanes and density dependence as sources of early‐life ecological adversity on Cayo Santiago rhesus macaque female reproduction and decompose their effects onto the mean age‐specific fertility, reproductive pace, and lifetime reproductive success (LRS). Females experiencing major hurricanes exhibit a delayed reproductive debut but maintain the pace of reproduction past debut and show a higher mean fertility during prime reproductive ages, relative to unaffected females. Increasing density at birth is associated to a decrease in mean fertility and reproductive pace, but such association is absent at intermediate densities. When combined, our study reveals that hurricanes early in life predict a delay‐overshoot pattern in mean age‐specific fertility that supports the maintenance of LRS. In contrast to predictive adaptive response models of accelerated reproduction, this long‐lived population presents a novel reproductive strategy where females who experience major natural disasters early in life ultimately overcome their initial reproductive penalty with no major negative fitness outcomes. Density presents a more complex relation with reproduction that suggests females experiencing a population regulated at intermediate densities early in life will escape density dependence and show optimized reproductive schedules. Our results support hypotheses about life history trade‐offs in which adversity‐affected females ensure their future reproductive potential by allocating more energy to growth or maintenance processes at younger adult ages.  相似文献   

6.
Environmental factors influence variation in life histories by affecting growth, development, and reproduction. We conducted an experiment in outdoor mesocosms to examine how diet and a time constraint on juvenile development (pond‐drying) influence life‐history trade‐offs (growth, development, adult body mass) in the caddis fly Limnephilus externus (Trichoptera: Limnephilidae). We predicted that: (1) diet supplementation would accelerate larval growth and development, and enhance survival to adulthood; (2) pond‐drying would accelerate development and increase larval mortality; and (3) the relationship between adult mass and age at maturity would be negative. Diet supplementation did lead to larger adult mass under nondrying conditions, but did not significantly alter growth or development rates. Contrary to predictions, pond‐drying reduced growth rates and delayed development. The slope (positive or negative) of the female mass–age at maturity relationship depended on interactions with diet or pond‐drying, but the male mass–age relationship was negative and independent of treatment. Our results suggest that pond‐drying can have negative effects on the future fitness of individuals by increasing the risk of desiccation‐induced, pre‐reproductive mortality and decreasing adult body size at maturity. These negative effects on life history cannot be overcome with additional nutritional resources in this species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 495–504.  相似文献   

7.
Plant strategy and life‐history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life‐history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life‐history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants.  相似文献   

8.
Allocation decisions depend on an organism's condition which can change with age. Two opposite changes in life‐history traits are predicted in the presence of senescence: either an increase in breeding performance in late age associated with terminal investment or a decrease due to either life‐history trade‐offs between current breeding and future survival or decreased efficiency at old age. Age variation in several life‐history traits has been detected in a number of species, and demographic performances of individuals in a given year are influenced by their reproductive state the previous year. Few studies have, however, examined state‐dependent variation in life‐history traits with aging, and they focused mainly on a dichotomy of successful versus failed breeding and non‐breeding birds. Using a 50‐year dataset on the long‐lived quasi‐biennial breeding wandering albatross, we investigated variations in life‐history traits with aging according to a gradient of states corresponding to potential costs of reproduction the previous year (in ascending order): non‐breeding birds staying at sea or present at breeding grounds, breeding birds that failed early, late or were successful. We used multistate models to study survival and decompose reproduction into four components (probabilities of return, breeding, hatching, and fledging), while accounting for imperfect detection. Our results suggest the possible existence of two strategies in the population: strict biennial breeders that exhibited almost no reproductive senescence and quasi‐biennial breeders that showed an increased breeding frequency with a strong and moderate senescence on hatching and fledging probabilities, respectively. The patterns observed on survival were contrary to our predictions, suggesting an influence of individual quality rather than trade‐offs between reproduction and survival at late ages. This work represents a step further into understanding the evolutionary ecology of senescence and its relationship with costs of reproduction at the population level. It paves the way for individual‐based studies that could show the importance of intra‐population heterogeneity in those processes.  相似文献   

9.
We develop a new model of life history evolution to investigate the evolution of age at first reproduction. Density dependence is taken into account. For a given "species", age of maturity, offspring survival, immature survival, adult survival, fecundity, immature age-classes entering in competition with adults and immature competitive ability are traits adjustable by natural selection, and constitute a particular strategy. On the contrary, the type of intraspecific competition (scramble or contest), strength of competition and inherent net reproductive rate Ro(inh) are fixed (specific) characteristics. As a consequence of fixing Ro(inh), the evolution of any trait will affect trade-offs between others. Evolutionarily stable strategies are determined numerically by using the mathematical concept of Lyapunov exponents. Altogether, we consider 960 different hypothetical "species" (i.e. different combinations of fixed traits). Corresponding ESSs are analyzed with respect to their age at first reproduction, adult survival and immature competitive ability components. They appear to be gathered in three groups. One is intuitive and characterized by a reduction of immature competitive ability and a correlation of age of maturity with adult survival; populations reach mainly equilibria. The two other groups respectively include "species" with low age of maturity but high adult survival, and "species" close to semelparity with delayed maturity; immature competitive ability may not be minimized, and populations possibly exhibit complex dynamics. In conclusion, the hypothesis that the evolution of a demographic parameter modifies trade-offs between others turns out to have important consequences. We argue that life history theory cannot ignore the source and mode-of-operation of density dependence and must regard potential short-term instability as essential.  相似文献   

10.
We measured age‐specific fecundity and survival in recombinant inbred lines of Drosophila melanogaster that were derived from an artificial selection experiment for delayed reproduction. Age at peak oviposition is highly heritable (h2B= 0.55). We find three qualitative categories of peak oviposition: early‐, midlife‐, and bimodal. Genetic correlations between life span and early fecundity are not significantly different from zero, but correlations with midlife fecundity are positive and statistically significant. Long‐lived genotypes exhibit a midlife fecundity peak. There is no evidence for a shift of reproductive effort from early to later stages. The existence of qualitatively recombinant phenotypes, including “superflies” that exhibit both enhanced survival and high levels of early fecundity, argues against the widespread idea that life history evolution in Drosophila is dominated by negative pleiotropy. There is clear evidence of age‐specific adaptation in the timing of oviposition.  相似文献   

11.
The Beta species complex shows a gradient of life histories from pronounced semelparity (big‐bang reproduction) to pronounced iteroparity (repeated reproduction). Models assume a trade‐off between investment in reproduction and survival. Reproductive effort is thought to increase with decreasing life span, and to be invariable in semelparous plants and susceptible to environmental conditions in iteroparous plants. These assumptions and hypotheses were verified by a greenhouse experiment testing six different life cycles at three contrasting nutrient levels. This study suggests that reproductive effort is negatively correlated with mean life span along the life‐cycle gradient. Unlike semelparous beets, reproductive effort in iteroparous beets is extremely sensitive to nutrient level. Phenotypic correlation between allocation to reproduction and allocation to survival generally appeared significantly negative in the longest‐lived iteroparous beets, nonsignificant in intermediate life histories and obviously positive in semelparous beets (no trade‐off control).  相似文献   

12.
Hypotheses exploring the influence of dietary conditions on the life‐history trade‐off between survival and reproductive success are extensively tested in female insects but only rarely explored in males. The present study examines the impact of dietary quality and female access on age‐specific reproduction and survival of the male Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). There is a clear cost of female access for males with access to dietary protein, measurable as a decrease in life expectancy, which is further influenced by the age when females are introduced. A protein deficient diet reduces the lifespan benefit of virginity and masks the detrimental effect of female access on male life expectancy. Dietary protein is not necessary for reproductive success, although access to protein at eclosion improves the lifetime reproductive success of males compared to when it is delayed. Overall, reproductive success diminishes as the male flies age, regardless of the dietary conditions, providing evidence for reproductive senescence in males. Delaying the males' access to a protein source fails to influence the negative effect of age on reproductive ability. Because age‐specific reproductive rates decline with age, regardless of diet, male fitness does not benefit from lifespan extension. Therefore, males can be expected to allocate available resources towards reproductive effort in favour of an extended lifespan, regardless of mate and protein availability.  相似文献   

13.
In cooperatively breeding species, many individuals only start breeding long after reaching physiological maturity [1], and this delay is expected to reduce lifetime reproductive success (LRS) [1-3]. Although many studies have investigated how nonbreeding helpers might mitigate the assumed cost of delayed breeding (reviewed in [3]), few have directly quantified the cost itself [4, 5] (but see [6, 7]). Moreover, although life-history tradeoffs frequently influence the sexes in profoundly different ways [8, 9], it has been generally assumed that males and females are similarly affected by a delayed start to breeding [7]. Here, we use 24 years of data to investigate the sex-specific cost of delayed breeding in the cooperatively breeding green woodhoopoe (Phoeniculus purpureus) and show that age at first breeding is related to LRS differently in males and females. As is traditionally expected, males that started to breed earlier in life had greater LRS than those that started later. However, females showed the opposite pattern: Those individuals that started to breed later in life actually had greater LRS than those that started earlier. In both sexes, the association between age at first breeding and LRS was driven by differences in breeding-career length, rather than per-season productivity. We hypothesize that the high mortality rate of young female breeders, and thus their short breeding careers, is related to a reduced ability to deal with the high physiological costs of reproduction in this species. These results demonstrate the importance of considering sex-specific reproductive costs when estimating the payoffs of life-history decisions and bring into question the long-held assumption that delayed breeding is necessarily costly.  相似文献   

14.
Senescence is predicted to be associated with the intensity and timing of reproduction at an earlier age. Here, we examine the phenotypic association between reproduction and post‐reproductive survival in three pre‐industrial human populations that lived in Northern Scandinavia during 1640–1870. In both sexes longevity was independent of the total number of born or adult children, whereas early reproduction was negatively associated with the longevity of females and males. Our results thus do not support the view that reproductive investment as such has a negative impact on longevity, but suggest that survival costs are associated with the scheduling of reproduction. We discuss, however, an alternative point of view suggesting that less intense selection for early reproduction, extended parental care, and social structure allowing kin selection through the effects of close relatives are factors that have selected for the long post‐reproductive life span in humans.  相似文献   

15.
Aspects of life history, such as processes and timing of development, age at maturation, and life span are consistently associated with one another across the animal kingdom. Species that develop rapidly tend to mature and reproduce early, have many offspring, and exhibit shorter life spans (r-selection) than those that develop slowly, have extended periods of premature growth, mature later in life, reproduce later and less frequently, have few offspring and/or single births, and exhibit extended life spans (K-selection). In general, primates are among the most K-selected of species. A suite of highly derived life history traits characterizes humans. Among these are physically immature neonates, slowed somatic development both in utero and post-natally, late attainment of reproductive maturity and first birth, and extended post-mature survival. Exactly when, why, and through what types of evolutionary interactions this suite arose is currently the subject of much conjecture and debate. Humankind's biocultural adaptations have helped to structure human life history evolution in unique ways not seen in other animal species. Among all species, life history traits may respond rapidly to alterations in selective pressures through hormonal processes. Selective pressures on life history likely varied widely among hominids and humans over their evolutionary history. This suggests that current patterns of human growth, development, maturation, reproduction, and post-mature survival may be of recent genesis, rather then long-standing adaptations. Thus, life history patterns observed among contemporary human and chimpanzee populations may provide little insight to those that existed earlier in hominid/human evolution.  相似文献   

16.
Mortality is U-shaped with age for many species, declining from birth to sexual maturity, then rising in adulthood, sometimes with postreproductive survival. We show analytically why the optimal life history of a species with determinate growth is likely to have this shape. An organism allocates energy among somatic growth, fertility and maintenance/survival at each age. Adults may transfer energy to juveniles, who can then use more energy than they produce. Optimal juvenile mortality declines from birth to maturity, either to protect the increasingly valuable cumulative investments by adults in juveniles or to exploit the compounding effects of early investment in somatic growth, since early growth raises subsequent energy production, which in turn supports further growth. Optimal adult mortality rises after maturity as expected future reproduction declines as in Hamilton, but intergenerational transfers lead to postreproductive survival as in Lee. Here the Hamilton and transfer effects are divided by probabilities of survival in contrast to the fitness impact measures, which are relevant for mutation-selection balance. If energetic efficiency rises strongly with adult experience, then adult mortality could initially be flat or declining.  相似文献   

17.
Josh R. Auld  Anne Charmantier 《Oikos》2011,120(8):1129-1138
Reproductive senescence, an intra‐individual decline in reproductive function with age, is widespread, but proximate factors determining its rate remain largely unknown. Most studies of reproductive senescence focus on females, leaving senescence in male function and its implications for female function largely understudied. We constructed linear mixed models to explore the interactive effects of paternal and maternal age and a life‐history trait (i.e. age at first reproduction) on four fitness components (i.e. laying date, clutch size, number of fledglings and number of recruits) measured in a wild, breeding population of blue tits Cyanistes caeruleus ogliastrae where individual breeding success has been followed for over 30 years (our dataset spanned 29 years). Previous studies have shown that, across female lifespan, laying date decreases and subsequently increases; earlier laying dates result in higher fitness because hatchlings have greater access to a seasonal food source. Our analyses reveal that females that initiate reproduction early in life show a greater delay in laying date with old age. In addition to delayed laying dates, older females lay smaller clutches. However, the magnitude of female age effects was influenced by the age at first reproduction of their breeding partners. Senescence of laying date and clutch size was reduced when females mated with males that reproduced early in life compared to males that delayed reproduction. We confirmed that both laying date and clutch size were significantly correlated with reproductive fitness suggesting that these dynamics early in the breeding cycle can have long‐term consequences. These complex phenotypic interactions shed light on the proximate mechanisms underlying reproductive senescence in nature and highlight the potential importance of cross‐sex age by life‐history interactions.  相似文献   

18.
Oli MK  Armitage KB 《Oecologia》2003,136(4):543-550
Theoretical and empirical studies suggest that the age of first reproduction (the age at which reproduction begins) can have a substantial influence on population dynamics and individual fitness. Using complete survival and reproductive histories of 428 female yellow-bellied marmots (Marmota flaviventris) from a 40-year study (1962-2001), we investigated causes and fitness consequences of delayed maturity. Most females (86%) died without reproducing. The age of first reproduction of females that survived to reproduce at least once (n=60) ranged from 2 to 6 years. Females maturing later did not have a larger lifetime number of successful reproductive events or offspring production, nor did they experience improved survival. Females reproducing earlier had a higher fitness than those that delayed maturity. These results suggest that the net cost of early maturity was less than fitness benefits associated with early onset of reproduction, and that age of first reproduction in our study population is under substantial directional selection favoring early maturity. We conclude that female yellow-bellied marmots delay onset of reproduction not because of fitness benefits of foregoing reproduction at an earlier age, but due to the social suppression of reproduction by older, reproductive females, which enhances their own fitness to the detriment of the fitness of young females. Our results indicate that female yellow-bellied marmots that survive to reproduce may act to increase their own direct fitness, and that social suppression of reproduction of young females is a part of that strategy.  相似文献   

19.
The trade‐off between gametes and soma is central to life history evolution. Oosorption has been proposed as a mechanism by which females can redirect nutrients invested in oocytes into survival when conditions for reproduction are poor. Although positive correlations between oocyte degradation and lifespan have been documented in oviparous insects, the adaptive significance of this process in species with more complex reproductive biology has not been explored. Further, environmental condition is a multivariate state, and combinations of environmental stresses may interact in unpredictable ways. Previous work on the ovoviviparous cockroach, Nauphoeta cinerea, revealed that females manipulated to mate late relative to sexual maturation experience age‐related loss in fecundity because of loss of viable oocytes via apoptosis. This loss in fecundity is correlated with a reduction in female mate choice. Food deprivation while mating is delayed further increases levels of oocyte apoptosis, but the relationship between starvation‐induced apoptosis and life history are unknown. To investigate this, virgin females were either fed or starved from eclosion until provided with a mate at a time known to be suboptimal for fertility. Following mating, females were fed for the duration of their lifespan. We measured lifetime reproductive performance. Contrary to predictions, under conditions of delayed mating opportunity, starved females had greater fecundity, gave birth to more high‐quality offspring and had increased longevity compared with that of fed females. We suggest that understanding proximal mechanisms underlying life history trade‐offs, including the function of oocyte apoptosis, and how these mechanisms respond to varied environmental conditions is critical.  相似文献   

20.
Life-history theory states that reproductive events confer costs upon mothers. Many studies have shown that reproduction causes a decline in maternal condition, survival or success in subsequent reproductive events. However, little attention has been given to the prospect of reproductive costs being passed onto subsequent offspring, despite the fact that parental fitness is a function of the reproductive success of progeny. Here we use pedigree data from a pre-industrial human population to compare offspring life-history traits and lifetime reproductive success (LRS) according to the cost incurred by each individual's mother in the previous reproductive event. Because producing a son versus a daughter has been associated with greater maternal reproductive cost, we hypothesize that individuals born to mothers who previously produced sons will display compromised survival and/or LRS, when compared with those produced following daughters. Controlling for confounding factors such as socio-economic status and ecological conditions, we show that those offspring born after elder brothers have similar survival but lower LRS compared with those born after elder sisters. Our results demonstrate a maternal cost of reproduction manifested in reduced LRS of subsequent offspring. To our knowledge, this is the first time such a long-term intergenerational cost has been shown in a mammal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号