首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tumor necrosis factor alpha converting enzyme (TACE) activity is required for the shedding of a variety of biologically active membrane bound precursors. The activation of TACE necessitates the proteolytic cleavage of its prodomain, a process that was suggested to be catalyzed by the proprotein convertase furin. However, the involvement of furin in this activation process has never been experimentally demonstrated. We have shown that the furinlike cleavage site (R-V-K-R(214)) localized between the prodomain and the metalloprotease domain of TACE is the sole site that can be in vitro cleaved by furin. In Cos7 cells, the release of TACE-processed substrates was reduced by the overexpression of the furin-specific proprotein convertase inhibitor Portland alpha1-antitrypsin inhibitor, but the release of TACE-processed substrates was increased by overexpression of furin in LoVo cells (deficient in furin activity) in which a mature form of TACE was identified. The immature form of TACE was detected at the surface of LoVo cells and at the surface of Cos7 and HT29 cells upon proprotein convertase inhibition. These results suggest that furin is the major proprotein convertase involved in the maturation/activation of TACE which is not a prerequisite for its cell-surface expression.  相似文献   

3.
4.
Thrombostasin (TS) is a thrombin inhibitor found in the salivary glands of horn flies (Haematobia irritans). It is produced as an inactive form with a 76-amino acid propeptide in the N-terminus preceding the mature TS. A minimal recognition sequence by subtilisin-like proprotein convertases, Arg-Xaa-Xaa-Arg, is localized C-terminal to the propeptide. This study demonstrated that a gene cloned from the salivary glands of the horn fly encodes a new convertase, subsequently named horn fly proprotein convertase (HFPC), and that the recombinant HFPC expressed in insect HighFive cell culture specifically cleaves recombinant pro-thrombostasin, produced in E. coli, at the expected site. The relative cleavage efficiency of rHFPC was compared with that of recombinant human furin, a commercially available proprotein convertase. The result indicated that this newly identified proprotein convertase is of importance for the proteolytic maturation of thrombostasin, a protein secreted in horn fly saliva and used by the insect to counteract its host's haemostatic response.  相似文献   

5.
PACE4A is a member of the mammalian subtilisin-like proprotein convertase family which is responsible for the proteolytic activation of precursors into their biologically active forms. Previously we reported that the maturation of proPACE4A occurs via a intramolecular autoactivation and cleavage of the propeptide is a rate-limiting step for the secretion of PACE4A (Nagahama et al., FEBS Lett. (1998) 434, 155-159). Although PACE4A is a putative secretory enzyme, it matures and is secreted much slower than general secretory proteins. In this study, we investigated the molecular mechanism underlying this slow maturation. The deletion of 25 amino acids at the carboxy terminus is sufficient for a marked acceleration in both the maturation and secretion of PACE4A. The carboxyl-truncated proPACE4A existed only as a monomer-sized form in the endoplasmic reticulum, whereas the wild type of proPACE4A existed in larger forms. Further, the fusion construct of yellow fluorescent protein and the carboxy-terminal sequence of PACE4A associated with the proPACE4A moiety and inhibited maturation. Thus the carboxy terminus of PACE4A functions as a potent autoinhibitor of its activation, resulting in the retention of proPACE4A in the endoplasmic reticulum. These findings indicate that PACE4A activity is highly controlled by a unique system at post-translational level.  相似文献   

6.
7.
PACE4, furin and PC6 are Ca2+-dependent serine endoproteases that belong to the subtilisin-like proprotein convertase (SPC) family. Recent reports have supported the involvement of these enzymes in processing of growth/differentiation factors, viral replication, activation of bacterial toxins and tumorigenesis, indicating that these enzymes are a fascinating target for therapeutic agents. In this work, we evaluated the sensitivity and selectivity of three rat alpha1-antitrypsin variants which contained RVPR352, AVRR352 and RVRR352, respectively, within their reactive site loop using both inhibition of enzyme activity toward a fluorogenic substrate in vitro and formation of a SDS-stable protease/inhibitor complex ex vivo. The RVPR variant showed relatively broad selectivity, whereas the AVRR and RVRR variants were more selective than the RVPR variant. The AVRR variant inhibited furin and PC6 but not PACE4. This selectivity was further confirmed by complex formation and inhibition of pro-complement C3 processing. On the other hand, although the RVRR variant inhibited both PACE4 and furin effectively, it needed a 600-fold higher concentration than the RVPR variant to inhibit PC6 in vitro. These inhibitors will be useful tools in helping us to understand the roles of PACE4, furin and PC6.  相似文献   

8.
Fibrillin-1 is synthesized as a proprotein that undergoes proteolytic processing in the unique C-terminal domain by a member of the PACE/furin family of endoproteases. This family of endoproteases is active in the trans-Golgi network (TGN), but metabolic labeling studies have been controversial as to whether profibrillin-1 is processed intracellularly or after secretion. This report provides evidence that profibrillin-1 processing is not an intracellular event. Bafilomycin A(1) and incubation of dermal fibroblasts at 22 degrees C were used to block secretion in the TGN to confirm that profibrillin-1 processing did not occur in this compartment. Profibrillin-1 immunoprecipitation studies revealed that two endoplasmic reticulum-resident molecular chaperones, BiP and GRP94, interacted with profibrillin-1. To determine the proprotein convertase responsible for processing profibrillin-1, a specific inhibitor of furin, alpha-1-antitrypsin, Portland variant, was both expressed in the cells and added to cells exogenously. In both cases, the inhibitor blocked the processing of profibrillin-1, providing evidence that furin is the enzyme responsible for profibrillin-1 processing. These studies delineate the secretion and proteolytic processing of profibrillin-1, and identify the proteins that interact with profibrillin-1 in the secretory pathway.  相似文献   

9.
PACE4 (SPC4), a member of the subtilisin-like proprotein convertase (SPC) family of proteases that cleave at paired basic amino acids, exhibits a dynamic expression pattern during embryogenesis and colocalizes with bone morphogenetic proteins (BMPs). Recently Cui et al. reported that the ectopic expression of alpha1-antitrypsin variant Portland (alpha1-PDX), an engineered serpin that contains the minimal SPC consensus motif in its reactive loop, blocks the proteolytic activation of BMP4, leading to abnormal embryogenic development [Cui, Y. et al. (1998) EMBO J. 17, 4735-4743]. TGFbeta-related factors such as BMPs are synthesized as inactive precursors and activated by limited proteolysis at multibasic amino acids. Therefore, an alpha1-PDX-inhibitable protease is thought to participate in BMP activation. However, conflicting properties, including sensitivity to alpha1-PDX, have been reported for PACE4. In this study, we examined whether alpha1-PDX is responsible for the inhibition of PACE4 by measuring the protease/inhibitor complex directly. Here we show that alpha1-PDX has the ability to form an SDS-stable acyl-intermediate (180 kDa) with PACE4 in vivo and in vitro. Further, we characterized the PACE4 secreted into the culture medium from Cos-1 cells by a specific immunological assay. An alpha1-PDX-insensitive and decanoyl-RVKR-chloromethylketone-sensitive 60-kDa protease(s) is greatly activated in conditioned medium by PACE4 overexpression, suggesting that the activation of an unknown protease(s) other than PACE4 is the cause of the variation in the properties of PACE4. PACE4 is a Ca(2+)-dependent protease with an optimal Ca(2+) requirement of 2 mM, and shows its highest activity at weakly basic pH. PACE4 activity is completely inhibited by EDTA and EGTA, but not by leupeptin. These results show that PACE4 activity can be inhibited by alpha1-PDX as well as furin (SPC1) and suggest that the inhibition of PACE4-mediated activation of factors such as BMPs by alpha1-PDX causes abnormal embryogenic development.  相似文献   

10.
Proprotein convertases are enzymes that proteolytically cleave protein precursors in the secretory pathway to yield functional proteins. Seven mammalian subtilisin/Kex2p-like proprotein convertases have been identified: furin, PC1, PC2, PC4, PACE4, PC5 and PC7. The binding pockets of all seven proprotein convertases are evolutionarily conserved and highly similar. Among the seven proprotein convertases, the furin cleavage site motif has recently been characterized as a 20-residue motif that includes one core region P6-P2´ inside the furin binding pocket. This study extended this information by examining the 3D structural environment of the furin binding pocket surrounding the core region P6-P2´ of furin substrates. The physical properties of mutations in the binding pockets of the other six mammalian proprotein convertases were compared. The results suggest that: 1) mutations at two positions, Glu230 and Glu257, change the overall density of the negative charge of the binding pockets, and govern the substrate specificities of mammalian proprotein convertases; 2) two proprotein convertases (PC1 and PC2) may have reduced sensitivity for positively charged residues at substrate position P5 or P6, whereas the substrate specificities of three proprotein convertases (furin, PACE4, and PC5) are similar to each other. This finding led to a novel design of a short peptide pattern for small molecule inhibitors: [K/R]-X-V-X-K-R. Compared with the widely used small molecule dec-RVKR-cmk that inhibits all seven proprotein convertases, a finely-tuned derivative of the short peptide pattern [K/R]-X-V-X-K-R may have the potential to more effectively inhibit five of the proprotein convertases (furin, PC4, PACE4, PC5 and PC7) compared to the remaining two (PC1 and PC2). The results not only provide insights into the molecular evolution of enzyme function in the proprotein convertase family, but will also aid the study of the functional redundancy of proprotein convertases and the development of therapeutic applications.  相似文献   

11.
We have investigated the unique role of the insulin receptor (IR) and the balance of its isoforms A and B in the regulation of apoptosis in simian virus 40 (SV40)-immortalized neonatal hepatocytes. Immortalized hepatocytes lacking (HIR KO) or expressing the entire IR (HIR LoxP), and cells expressing either IRA (HIR RecA) or IRB (HIR RecB) have been generated. IR deficiency in hepatocytes increases sensitivity to the withdrawal of growth factors, because these cells display an increase in reactive oxygen species, a decrease in Bcl-x(L), a rapid accumulation of nuclear Foxo1, and up-regulation of Bim. These events resulted in acceleration of caspase-3 activation, DNA laddering, and cell death. The single expression of either IRA or IRB produced a stronger apoptotic phenotype. In these cells, protein complexes containing IRA or IRB and Fas/Fas-associating protein with death domain activated caspase-8, and, ultimately, caspase-3. In hepatocytes expressing IRA, Bid cleavage and cytochrome C release were increased whereas direct activation of caspase-3 by caspase-8 and a more rapid apoptotic process occurred in hepatocytes expressing IRB. Conversely, coexpression of IRA and IRB in IR-deficient hepatocytes rescued from apoptosis. Our results suggest that balance alteration of IRA and IRB may serve as a ligand-independent apoptotic trigger in hepatocytes, which may regulate liver development.  相似文献   

12.
13.
Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.  相似文献   

14.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   

15.
PACE4, PC6 and furin are potent subtilisin-like proprotein convertases (SPCs) which are responsible for the activation of transforming growth factor-β (TGFβ)-related factors such as bone morphogenetic proteins. Heparan sulfate proteoglycan within the extracellular matrix (ECM) is known to regulate the biological activity of various differentiation factors including TGFβ-related molecules. PACE4 binds tightly to heparin and its heparin-binding region was found to be a cationic stretch of amino acids between residues 743 and 760. Furthermore, PACE4 was detected in the extracellular material fraction of the HEK293 cells, defined as the material remaining on the culture plate following the removal of the cells from the plate. PACE4 bound to the extracellular fraction was selectively dislodged by heparin into the culture medium. Heparin has no inhibitory activity against PACE4. Similarly, PC6A is also able to bind to heparin, whereas soluble furin does not. In human placenta, PACE4 is mainly present in syncytiotrophoblasts and can be released by heparin. These results suggest that PACE4 and PC6 are unique SPC family proteases that anchor heparan sulfate proteoglycans at the ECM. The interaction between PACE4 and heparan sulfate proteoglycans might play an important role in the delicate spatiotemporal regulation of TGFβ-related factors' biological activity.  相似文献   

16.
17.
PACE4 is a member of the mammalian subtilisin-like proprotein convertase (SPC) family, which contribute to the activation of transforming growth factor (TGF) beta family proteins. We previously reported that PACE4 is highly expressed in syncytiotrophoblasts of human placenta [Tsuji et al. (2003) BIOCHIM: Biophys. Acta 1645, 95-104]. In this study, the regulatory mechanism for PACE4 expression in placenta was analyzed using a human placental choriocarcinoma cell line, BeWo cells. Promoter analysis indicated that an E-box cluster (E4-E9) in the 5'-flanking region of the PACE4 gene acts as a negative regulatory element. The binding of human achaete-scute homologue 2 (Hash-2) to the E-box cluster was shown by gel mobility-shift assay. The overexpression of Hash-2 caused a marked decrease in PACE4 gene expression. When BeWo cells were grown under low oxygen (2%) conditions, the expression of Hash-2 decreased, while that of PACE4 increased. In both cases, other SPCs, such as furin, PC5/6, and PC7/8, were not affected. Further, PACE4 expression was found to be developmentally regulated in rat placenta. By in situ hybridization, Mash-2 (mammalian achaete-scute homologue 2) mRNA was found to be expressed in the spongiotrophoblast layer where PACE4 was not expressed. In contrast, the PACE4 mRNA was expressed mainly in the labyrinthine layer where Mash-2 was not detected. These results suggest that PACE4 expression is down-regulated by Hash-2/Mash-2 in both human and rat placenta and that many bioactive proteins might be regulated by PACE4 activity.  相似文献   

18.
Membrane type-1 matrix metalloproteinase (MT1-MMP) is the prototypical member of a subgroup of membrane-anchored proteinases that belong to the matrix metalloproteinase family. Although synthesized as a zymogen, MT1-MMP plays an essential role in extracellular matrix remodeling after an undefined process that unmasks its catalytic domain. We now report the existence of a proprotein convertase-MT1-MMP axis that regulates the processing and functional activity of the metalloproteinase. Two sets of basic motifs in the propeptide region of MT1-MMP are identified that potentially can be recognized by the proprotein convertase family of subtilisin-like proteases. Processing of proMT1-MMP as well as the expression of its proteolytic activity were blocked by mutating these recognition motifs or by inhibiting the proprotein convertases furin and PC6 with the serpin-based inhibitor alpha(1) antitrypsin Portland. Furthermore, both furin-dependent and furin-independent MT1-MMP processing pathways are identified that require tethering of the metalloproteinase to the cell surface. These findings demonstrate the existence of a proprotein convertase-MT1-MMP axis that can regulate extracellular matrix remodeling.  相似文献   

19.
PACE4, PC6 and furin are potent subtilisin-like proprotein convertases (SPCs) which are responsible for the activation of transforming growth factor-beta (TGFbeta)-related factors such as bone morphogenetic proteins. Heparan sulfate proteoglycan within the extracellular matrix (ECM) is known to regulate the biological activity of various differentiation factors including TGFbeta-related molecules. PACE4 binds tightly to heparin and its heparin-binding region was found to be a cationic stretch of amino acids between residues 743 and 760. Furthermore, PACE4 was detected in the extracellular material fraction of the HEK293 cells, defined as the material remaining on the culture plate following the removal of the cells from the plate. PACE4 bound to the extracellular fraction was selectively dislodged by heparin into the culture medium. Heparin has no inhibitory activity against PACE4. Similarly, PC6A is also able to bind to heparin, whereas soluble furin does not. In human placenta, PACE4 is mainly present in syncytiotrophoblasts and can be released by heparin. These results suggest that PACE4 and PC6 are unique SPC family proteases that anchor heparan sulfate proteoglycans at the ECM. The interaction between PACE4 and heparan sulfate proteoglycans might play an important role in the delicate spatiotemporal regulation of TGFbeta-related factors' biological activity.  相似文献   

20.
Lipoprotein lipase (LPL)-mediated lipolysis of triglycerides is the first and rate-limiting step in chylomicron/very low density lipoprotein clearance at the luminal surface of the capillaries. Angiopoietin-like protein 3 (ANGPTL3) is shown to inhibit LPL activity and plays important roles in modulating lipoprotein metabolism in vivo. However, the mechanism by which it inhibits LPL activity remains poorly understood. Using cell-based analysis of the interaction between ANGPTL3, furin, proprotein convertase subtilisin/kexin type 5 (PCSK5), paired amino acid converting enzyme-4 (PACE4), and LPL, we demonstrated that the cleavage of LPL by proprotein convertases is an inactivation process, similar to that seen for endothelial lipase cleavage. At physiological concentrations and in the presence of cells, ANGPTL3 is a potent inhibitor of LPL. This action is due to the fact that ANGPTL3 can enhance LPL cleavage by endogenous furin and PACE4 but not by PCSK5. This effect is specific to LPL but not endothelial lipase. Both N- and C-terminal domains of LPL are required for ANGPTL3-enhanced cleavage, and the N-terminal domain of ANGPTL3 is sufficient to exert its effect on LPL cleavage. Moreover, ANGPTL3 enhances LPL cleavage in the presence of either heparan sulfate proteoglycans or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1). By enhancing LPL cleavage, ANGPTL3 dissociates LPL from the cell surface, inhibiting both the catalytic and noncatalytic functions of LPL. Taken together, our data provide a molecular connection between ANGPTL3, LPL, and proprotein convertases, which may represent a rapid signal communication among different metabolically active tissues to maintain energy homeostasis. These novel findings provide a new paradigm of specific protease-substrate interaction and further improve our knowledge of LPL biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号