首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(5):444-450
Genomic imprinting is defined as an epigenetic modification that leads to parent-of-origin specific monoallelic expression. Some current research on the fetal control growth has been focused on the study of genes that display imprinted expression in utero. Four imprinted genes, two paternally expressed (IGF2 and PEG10) and two maternally expressed (PHLDA2 and CDKN1C), are well known to play a role in fetal growth and placental development. Pregnancy loss in the general reproductive population is a very common occurrence and other genetic causes beyond chromosomal abnormalities could be involved in spontaneous miscarriages or fetal deaths, such as alteration of expression in imprinted genes particularly those related to fetal or placental growth. Quantitative Real Time PCR was performed to evaluate gene expressions patterns of the four mentioned genes in spontaneous miscarriages or fetal deaths from 38 women. Expression levels of PHLDA2 gene were upregulated in the first trimester pregnancy cases and all four imprinted genes studied were upregulated in the second trimester of pregnancy cases comparing with controls. In third trimester PEG10 was downregulated in fetal samples group. This is the first study presenting data from human imprinted genes expression in spontaneous miscarriages or fetal deaths cases from the three trimesters of pregnancy.  相似文献   

2.
3.
PHLDA2 is an imprinted gene in cattle   总被引:1,自引:0,他引:1  
Genomic imprinting is an epigenetic non-Mendelian phenomenon found predominantly in placental mammals. Imprinted genes display differential expression in the offspring depending on whether the gene is maternally or paternally inherited. Currently, some 100 imprinted genes have been reported in mammals, and while some of these genes are imprinted across most mammalian species, others have been shown to be imprinted in only a few species. The PHLDA2 gene that codes for a pleckstrin homology-like domain, family A (member 2), protein has to date been shown to be a maternally expressed imprinted gene in humans, mice and pigs. Genes subject to imprinting can have major effects on mammalian growth, development and disease. For instance, disruption of imprinted genes can lead to aberrant growth syndromes in cloned domestic mammals, and it has been demonstrated that PHLDA2 mRNA expression levels are aberrant in the placenta of somatic clones of cattle. In this study, we demonstrate that PHLDA2 is expressed across a range of cattle foetal tissues and stages and provide the first evidence that PHLDA2 is a monoallelically expressed imprinted gene in cattle foetal tissues, and also in the bovine placenta.  相似文献   

4.
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.  相似文献   

5.
In the Dlk1-Dio3 imprinted domain, an intergenic differentially methylated region (IG-DMR) regulates the parental allele-specific expression of imprinted genes. The maternally inherited deletion of IG-DMR (IG-DMR(−/+)) results in perinatal lethality because of the overexpression of paternally expressed genes and repression of maternally expressed noncoding RNAs (ncRNAs), including Gtl2. To better understand the possible contribution of paternally expressed genes to the lethality, we attempted to rescue the lethality of IG-DMR(−/+) mutants by restoring the paternally expressed genes. Because the paternally inherited Gtl2 deletion (Gtl2(+/−)) induced a decrease in the expression of paternally expressed genes, we crossed female IG-DMR heterozygous mice and male Gtl2 heterozygous mutant mice. The resultant IG-DMR(−/+)/Gtl2(+/−) double mutant mice had normal expression levels of paternally expressed genes, and none of them showed perinatal lethality; however, most mice showed postnatal lethality with decreased expression of the maternally expressed ncRNAs. Thus, we inferred that paternally expressed genes are necessary for perinatal survivability and that maternally expressed ncRNAs are involved in postnatal lethality.  相似文献   

6.
Pleckstrin homology-like domain family A member 2 (PHLDA2) is a maternally expressed imprinted gene whose elevated expression has been linked to fetal growth restriction in a number of human studies. In mice, Phlda2 negatively regulates placental growth and limits the accumulation of placental glycogen. We previously reported that a three-copy transgene spanning the Phlda2 locus drove a fetal growth restriction phenotype late in gestation, suggesting a causative role for PHLDA2 in human growth restriction. However, in this mouse model, Phlda2 was overexpressed by fourfold, alongside overexpression of a second imprinted gene, Slc22a18. Here, we genetically isolate the role of Phlda2 in driving late fetal growth restriction in mice. We furthermore show that this Phlda2-driven growth restriction is asymmetrical, with a relative sparing of the brain, followed by rapid catch-up growth after birth, classic features of placental insufficiency. Strikingly, fetal growth restriction showed strain-specific differences, being apparent on the 129S2/SvHsd (129) genetic background and absent on the C57BL6 (BL6) background. A key difference between these two strains is the placenta. Specifically, BL6 placentae possess a more extensive endocrine compartment and substantially greater stores of placental glycogen. Taken together, these data support a direct role for elevated Phlda2 in limiting fetal growth but also suggest that growth restriction only manifests when there is limited placental reserve. These findings should be taken into account in interpreting the results from human studies.KEY WORDS: Phlda2, Fetal growth restriction, Asymmetric  相似文献   

7.
8.
Imprinted genes have been implicated in early embryonic, placental, and neonatal development and alterations in expression levels of these genes can lead to growth abnormalities and embryonic lethality. However, little is known about the functions of bovine imprinted genes during the pre-implantation period. Therefore, the objective of this study was to assess the influence of altered expression of imprinted genes on developmental progress of embryos using small interfering RNA (siRNA). Expression levels of 18 imprinted genes (MAGEL2, UBE3A, IGF2R, NAP1L5, TSSC4, PEG3, NDN, CDKN1C, PHLDA2, MKRN3, USP29, NNAT, PEG10, RTL1, IGF2, H19, MIM1, and XIST) were compared between embryos reaching the blastocyst stage and growth-arrested embryos (degenerates) using quantitative real-time PCR (qRT-PCR). Ten genes were found to be differentially expressed between blastocysts and degenerates. The CDKN1C gene showed the highest upregulation in blastocysts whereas PHLDA2 was highly expressed in degenerates. To assess whether the observed differential gene expression was causative or resultant of embryo degeneration, these genes were selected for functional analysis using siRNA. Injection of siRNA specific to PHLDA2 into one-cell zygotes resulted in a substantial increase in blastocyst development, whereas injection of CDKN1C-specific siRNA resulted in a 45% reduction (P = 0.0006) in blastocyst development. RNA-Seq analysis of CDKN1C-siRNA-injected vs. non-injected embryos revealed 51 differentially expressed genes with functions in apoptosis, lipid metabolism, differentiation, and cell cycle regulation. Gene ontology analysis revealed nine pathways related to cell signaling, metabolism, and nucleic acid processing. Overall, our results show that proper expression levels of the imprinted genes CDKN1C and PHLDA2 are critical for embryo development, which suggests that these genes can be used as markers for normal blastocyst formation.  相似文献   

9.
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully.  相似文献   

10.
Imprinted genes are known to be crucial for placental development and fetal growth in mammals, but no primary epigenetic abnormality in placenta has been documented to compromise human fetal growth. Imprinted genes demonstrate parent-of-origin-specific allelic expression that is epigenetically regulated i.e. extrinsic to the primary DNA sequence. To undertake an epigenetic analysis of poor fetal growth in placentae and cord blood tissues, we first established the tissue-specific patterns of methylation and imprinted gene expression for two imprinting clusters (KvDMR and H19 DMR) on chromosome 11p15 in placentae and neonatal blood for 20 control cases and 24 Small for Gestational Age (SGA) cases. We confirmed that, in normal human placenta, the H19 promoter is unmethylated. In contrast, most other human tissues show paternal methylation. In addition, we showed that the IGF2 DMR2, also paternally methylated in most human tissues, exhibits hypomethylation in placentae. However, in neonatal blood DNA, these two regions maintain the differential methylation status seen in most other tissues. Significantly, we have been able to demonstrate that placenta does maintain differential methylation at the imprinting control regions H19 DMR and KvDMR. Of note, in one SGA placenta, we found a methylation alteration at the H19 DMR and concomitant biallelic expression of the H19 gene, suggesting that loss of imprinting at H19 is one cause of poor fetal growth in humans. Of particular interest, we demonstrated also a decrease in IGF2 mRNA levels in all SGA placentae and showed that the decrease is, in most cases, independent of H19 regulation.  相似文献   

11.
Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.  相似文献   

12.
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.  相似文献   

13.
Genes subjected to genomic imprinting are often associated with prenatal and postnatal growth. Furthermore, it has been observed that maternally silenced/paternally expressed genes tend to favour offspring growth, whilst paternally silenced/maternally expressed genes will restrict growth. One imprinted cluster in which this has been shown to hold true is the Gnas cluster; of the three proteins expressed from this cluster, two, Gsα and XLαs, have been found to affect postnatal growth in a number of different mouse models. The remaining protein in this cluster, NESP55, has not yet been shown to be involved in growth. We previously described a new mutation, Ex1A-T, which upon paternal transmission resulted in postnatal growth retardation due to loss of imprinting of Gsα and loss of expression of the paternally expressed XLαs. Here we describe maternal inheritance of Ex1A-T which gives rise to a small but highly significant overgrowth phenotype which we attribute to reduction of maternally expressed NESP55.  相似文献   

14.
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.  相似文献   

15.
It has been reported that RNAi-dependent chromatin silencing in vertebrates is not restricted to the centromeres. To address whether RNAi machinery could regulate the chromatin structure of imprinted genes, we knocked down Dicer in HEK293 cells and found that the expression of PHLDA2, one of the several genes in the imprinted gene domain of 11p15.5, was specifically upregulated. This was accompanied by a shift towards more activated chromatin at PHLDA2 locus as indicated by change in H3K9 acetylation, however, the methylation state at this locus was not affected. Furthermore, we found that PHLDA2 was downregulated in growth-arrested HEK293 cells induced by either serum deprivation or contact inhibition. This suggests that PHLDA2 upregulation might be a direct result of Dicer depletion rather than the consequence of growth arrest induced by Dicer knockdown. Considering the reports that there is consistent placental outgrowth in PHLDA2 knockout mice and that PHLDA2 overexpression in mice causes growth inhibition, we speculate that PHLDA2 may be a candidate for contributing to the reduced growth rate of Dicer-deficient cells and the very early embryonic lethality in Dicer knockout mice.  相似文献   

16.
17.
In mammals, both the maternal and paternal genomes are necessary for normal embryogenesis due to parent-specific epigenetic modification of the genome during gametogenesis, which leads to non-equivalent expression of imprinted genes from the maternal and paternal alleles. In this study, we identified a paternally expressed imprinted gene, Zdbf2, by microarray-based screening using parthenogenetic and normal embryos. Expression analyses showed that Zdbf2 was paternally expressed in various embryonic and adult tissues, except for the placenta and adult testis, which showed biallelic expression of the gene. We also identified a differentially methylated region (DMR) at 10 kb upstream of exon 1 of the Zdbf2 gene and this differential methylation was derived from the germline. Furthermore, we also identified that the human homolog (ZDBF2) of the mouse Zdbf2 gene showed paternal allele-specific expression in human lymphocytes but not in the human placenta. Thus, our findings defined mouse chromosome 1 and human chromosome 2 as the loci for imprinted genes.  相似文献   

18.
Imprinted genes play vital roles in the placental development and fetal growth in eutherian mammals. DCN (decorin), PON2 (paraoxonase 2) and PEG3 (paternally expressed 3) genes have been identified as imprinted genes in the mouse. Here, we detected the imprinting status of three genes in the porcine placenta on DG90 (day 90 of gestation) and the expression differences in Yorkshire and Meishan placenta on DG26, DG55 and DG90. The results indicated that the DCN and PON2 genes were not imprinted genes, while the PEG3 gene showed paternal monoallelic expression in porcine placenta. The expression of the DCN gene increased from DG26 to DG90 in both Yorkshire and Meishan pig placenta. However, this gene expression was greater in Yorkshire than Meishan pig on DG55. The expression of the PON2 gene was greater in Meishan pig than that in Yorkshire on DG26 and DG90. The PEG3 gene expression was not affected by day of pregnancy or breed. Data from the present study contribute to function genomic of porcine placental development.  相似文献   

19.
Genomic imprinting is an epigenetic mechanism controlling parental-origin-specific gene expression. Perturbing the parental origin of the distal portion of mouse chromosome 12 causes alterations in the dosage of imprinted genes resulting in embryonic lethality and developmental abnormalities of both embryo and placenta. A 1 Mb imprinted domain identified on distal chromosome 12 contains three paternally expressed protein-coding genes and multiple non-coding RNA genes, including snoRNAs and microRNAs, expressed from the maternally inherited chromosome. An intergenic, parental-origin-specific differentially methylated region, the IG-DMR, which is unmethylated on the maternally inherited chromosome, is necessary for the repression of the paternally expressed protein-coding genes and for activation of the maternally expressed non-coding RNAs: its absence causes the maternal chromosome to behave like the paternally inherited one. Here, we characterise the developmental consequences of this epigenotype switch and compare these with phenotypes associated with paternal uniparental disomy of mouse chromosome 12. The results show that the embryonic defects described for uniparental disomy embryos can be attributed to this one cluster of imprinted genes on distal chromosome 12 and that these defects alone, and not the mutant placenta, can cause prenatal lethality. In the placenta, the absence of the IG-DMR has no phenotypic consequence. Loss of repression of the protein-coding genes occurs but the non-coding RNAs are not repressed on the maternally inherited chromosome. This indicates that the mechanism of action of the IG-DMR is different in the embryo and the placenta and suggests that the epigenetic control of imprinting differs in these two lineages.  相似文献   

20.

Background

Despite being a fundamental biological problem the control of body size and proportions during development remains poorly understood, although it is accepted that the insulin-like growth factor (IGF) pathway has a central role in growth regulation, probably in all animals. The involvement of imprinted genes has also attracted much attention, not least because two of the earliest discovered were shown to be oppositely imprinted and antagonistic in their regulation of growth. The Igf2 gene encodes a paternally expressed ligand that promotes growth, while maternally expressed Igf2r encodes a cell surface receptor that restricts growth by sequestering Igf2 and targeting it for lysosomal degradation. There are now over 150 imprinted genes known in mammals, but no other clear examples of antagonistic gene pairs have been identified. The delta-like 1 gene (Dlk1) encodes a putative ligand that promotes fetal growth and in adults restricts adipose deposition. Conversely, Grb10 encodes an intracellular signalling adaptor protein that, when expressed from the maternal allele, acts to restrict fetal growth and is permissive for adipose deposition in adulthood.

Results

Here, using knockout mice, we present genetic and physiological evidence that these two factors exert their opposite effects on growth and physiology through a common signalling pathway. The major effects are on body size (particularly growth during early life), lean:adipose proportions, glucose regulated metabolism and lipid storage in the liver. A biochemical pathway linking the two cell signalling factors remains to be defined.

Conclusions

We propose that Dlk1 and Grb10 define a mammalian growth axis that is separate from the IGF pathway, yet also features an antagonistic imprinted gene pair.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号