首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes.  相似文献   

2.
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection.  相似文献   

3.
Sperm competition is an important force driving the evolution of sperm design and function. Inter- and intraspecific variation in sperm design are strongly influenced by the risk of sperm competition in many taxa. In contrast, the variation among sperm of one male (intramale variation) is less well understood. We investigated intramale variation in sperm design in passerine birds and found that risk of sperm competition is negatively associated with intramale variation. This result is the first clear evidence that variation among sperm within an individual male is influenced by postcopulatory sexual selection. Our finding has important implications for male traits under pre- and postcopulatory sexual selection.  相似文献   

4.
5.
Gamete-recognition proteins have been shown to evolve by positive selection in diverse organism groups, such as marine invertebrates and mammals, although underlying evolutionary mechanisms driving this rapid divergence are poorly understood. However, several hypotheses have been put forward to explain the observed pattern, including different forms of sexual conflict and sperm competition. Because female gametes require more energy to produce than male gametes, female organisms suffer more when fertilisation goes wrong. One process that results in a failed mammalian fertilisation is polyspermy, when >1 sperm fertilises the egg. However in birds, there is no such sexual conflict because multiple sperm typically bind and fuse with the egg. If sexual conflict driven by polyspermy avoidance is important for the evolution of gamete-recognition proteins in vertebrates, we expect to find positive selection in the genes to be less pronounced in birds. We therefore sequenced six genes (ZP1, ZP2, ZP4, ZPAX, CD9, and Acrosin) encoding gamete-recognition proteins in several bird species to test for positive selection. For comparison, we also analysed ortologous sequences in a set of mammalian species. We found no major differences in the occurrence of adaptive evolution and the strength of selection between bird and mammal orthologs. From this we conclude that polyspermy avoidance does not act as the main underlying evolutionary force shaping the rate of evolution in these genes. We discuss other possible processes that could explain positive selection of gamete-recognition proteins in birds and mammals, such as hybridisation avoidance, cryptic female choice, and postcopulatory sperm competition.  相似文献   

6.
Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology.  相似文献   

7.
Male reproductive success is influenced by competitive interactions during precopulatory and postcopulatory selective episodes. Consequently, males can gain reproductive advantages during precopulatory contest competition by investing in weaponry and during postcopulatory sperm competition by investing in ejaculates. However, recent theory predicts male expenditure on weaponry and ejaculates should be subject to a trade‐off, and should vary under increasing risk and intensity of sperm competition. Here, we provide the first comparative analysis of the prediction that expenditure on weaponry should be negatively associated with expenditure on testes mass. Specifically, we assess how sexual selection influences the evolution of primary and secondary sexual traits among pinnipeds (seals, sea lions, and walruses). Using recently developed comparative methods, we demonstrate that sexual selection promotes rapid divergence in body mass, sexual size dimorphism (SSD), and genital morphology. We then show that genital length appears to be positively associated with the strength of postcopulatory sexual selection. However, subsequent analyses reveal that both genital length and testes mass are negatively associated with investment in precopulatory weaponry. Thus, our results are congruent with recent theoretical predictions of contest‐based sperm competition models. We discuss the possible role of trade‐offs and allometry in influencing patterns of reproductive trait evolution in pinnipeds.  相似文献   

8.
It is generally accepted that postcopulatory sexual selection drives rapid divergence of genital morphology among isolated populations. The mode of selection operating upon genitalia can be explored by comparing patterns of population divergence in genetic and genitalic traits. We collected Antichiropus variabilis millipedes from eight localities across the species range. Levels of among-population genetic divergence, at microsatellite loci, and the mitochondrial COI gene were very high. Following geometric morphometric analyses, genital morphology was also found to be highly divergent among the populations surveyed, whereas head morphology had not diverged as markedly. However, pairwise comparisons of F(ST) and P(ST) showed that among-population divergence in both genital and head shape was significantly lower than that experienced by neutral genetic markers. Our results suggest that the genitalia of A. variabilis are currently experiencing a period of stabilizing selection, the mode of selection expected for genitalia that function in species recognition via a "lock-and-key" mechanism. Our results demonstrate that although genital morphology can clearly diverge among genetically isolated populations, divergence is not necessarily as rapid as commonly argued, and continuous directional sexual selection may not always underpin the evolutionary divergence of male genitalia.  相似文献   

9.
Phenotypic adaptations may be the result of changes in gene structure or gene regulation, but little is known about the evolution of gene expression. In addition, it is unclear whether the same selective forces may operate at both levels simultaneously. Reproductive proteins evolve rapidly, but the underlying selective forces promoting such rapid changes are still a matter of debate. In particular, the role of sexual selection in driving positive selection among reproductive proteins remains controversial, whereas its potential influence on changes in promoter regions has not been explored. Protamines are responsible for maintaining DNA in a compacted form in chromosomes in sperm and the available evidence suggests that they evolve rapidly. Because protamines condense DNA within the sperm nucleus, they influence sperm head shape. Here, we examine the influence of sperm competition upon protamine 1 and protamine 2 genes and their promoters, by comparing closely related species of Mus that differ in relative testes size, a reliable indicator of levels of sperm competition. We find evidence of positive selection in the protamine 2 gene in the species with the highest inferred levels of sperm competition. In addition, sperm competition levels across all species are strongly associated with high divergence in protamine 2 promoters that, in turn, are associated with sperm swimming speed. We suggest that changes in protamine 2 promoters are likely to enhance sperm swimming speed by making sperm heads more hydrodynamic. Such phenotypic changes are adaptive because sperm swimming speed may be a major determinant of fertilization success under sperm competition. Thus, when species have diverged recently, few changes in gene-coding sequences are found, while high divergence in promoters seems to be associated with the intensity of sexual selection.  相似文献   

10.
Trade‐offs between pre‐ and postcopulatory traits influence their evolution, and male expenditure on such traits is predicted to depend on the number of competitors, the benefits from investing in weapons, and the risk and intensity of sperm competition. Males of the chorusing frog Crinia georgiana use their arms as weapons in contest competition. Previously, we showed that increased numbers of rivals elevated the risk and intensity of sperm competition due to multimale amplexus, and caused a reversal in the direction of precopulatory selection on arm girth. Here, we focused on the factors affecting postcopulatory fertilization success during group spawning, using paternity data from natural choruses. Competitive fertilization success depended on the time spent amplexed and amplexus position. Relative testes size but not arm girth, contributed to fertilization success, but the effect of testes size depended on amplexus position. Our findings offer within species empirical support for recent sperm competition models that incorporate precopulatory male–male competition, and show why an understanding of the evolution of animal weapons requires a consideration of both pre‐ and postcopulatory episodes of sexual selection.  相似文献   

11.
Postcopulatory sexual selection, either in the form of sperm competition or cryptic female choice, is an important selective force that is thought to have generated the enormous variation in sperm morphology observed interspecifically. However, the evolutionary significance of intraspecific variation in sperm morphology, and the role that postcopulatory sexual selection plays in influencing this variation, remains poorly investigated in invertebrates. Here, we tested the hypothesis that postcopulatory sexual selection reduces variation in sperm morphology, both between and within males, in 27 species of eusocial ants and bees. These eusocial species offer an unusual opportunity to assess how selection acts on variance in sperm morphology, as haploid males produce clonal, haploid sperm that does not experience haploid-diploid conflict. We provide solid evidence that males of polyandrous ant and bee species indeed produce less-variable sperm, indicating that sperm competition selected for sperm of superior quality. Our results offer a mechanistic explanation for the evolution of high-quality sperm and provide comprehensive evidence that sperm morphology of social insects is influenced by sexual selection.  相似文献   

12.
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.  相似文献   

13.
Sperm competition theory assumes a trade‐off between precopulatory traits that increase mating success and postcopulatory traits that increase fertilization success. Predictions for how sperm competition might affect male expenditure on these traits depend on the number of competing males, the advantage gained from expenditure on weapons, and the level of sperm competition. However, empirical tests of sperm competition theory rarely examine precopulatory male expenditure. We investigated how variation in male density affects precopulatory sexual selection on male weaponry and the level of sperm competition in the chorusing frog Crinia georgiana, where males use their arms as weapons in male–male combat. We measured body size and arm girth of 439 males, and recorded their mating success in the field. We found density‐dependent selection acting on arm girth. Arm girth was positively associated with mating success, but only at low population densities. Increased male density was associated with higher risk and intensity of sperm competition arising from multimale amplexus, and a reversal in the direction of selection on arm girth. Opposing patterns of pre‐ and postcopulatory selection may account for the negative covariation between arm girth and testes across populations of this species.  相似文献   

14.
Sexual selection and the adaptive evolution of mammalian ejaculate proteins   总被引:1,自引:0,他引:1  
An elevated rate of substitution characterizes the molecular evolution of reproductive proteins from a wide range of taxa. Although the selective pressures explaining this rapid evolution are yet to be resolved, recent evidence implicates sexual selection as a potentially important explanatory factor. To investigate this hypothesis, we sought evidence of a high rate of adaptive gene evolution linked to postcopulatory sexual selection in muroid rodents, a model vertebrate group displaying a broad range of mating systems. Specifically, we sequenced 7 genes from diverse rodents that are expressed in the testes, prostate, or seminal vesicles, products of which have the potential to act in sperm competition. We inferred positive Darwinian selection in these genes by estimation of the ratio of nonsynonymous (d(N), amino acid changing) to synonymous (d(S), amino acid retaining) substitution rates (omega = d(N)/d(S)). Next, we tested whether variation in this ratio among lineages could be attributed to interspecific variation in mating systems, as inferred from the variation in these rodents' relative testis sizes (RTS). Four of the 7 genes examined (Prm1, Sva, Acrv1, and Svs2, but not Svp2, Msmb, or Spink3) exhibit unambiguous evidence of positive selection. One of these, the seminal vesicle-derived protein Svs2, also shows some evidence for a concentration of positive selection in those lineages in which sperm competition is common. However, this was not a general trend among all the rodent genes we examined. Using the same methods, we then reanalyzed previously published data on 2 primate genes, SEMG1 and SEMG2. Although SEMG2 also shows evidence of positive selection concentrated in lineages subject to high levels of sperm competition, no such trend was found for SEMG1. Overall, despite a high rate of positive selection being a feature of many ejaculate proteins, these results indicate that the action of sexual selection potentially responsible for elevated evolutionary rates may be difficult to detect on a gene-by-gene basis. Although the extreme diversity of reproductive phenotypes exhibited in nature attests to the power of sexual selection, the extent to which this force predominates in driving the rapid molecular evolution of reproductive genes therefore remains to be determined.  相似文献   

15.
In spite of considerable interest in postcopulatory sexual selection, separating the effects of sperm competition from cryptic female choice remains difficult because mechanisms underlying postcopulatory processes are poorly understood. One methodological challenge is to quantify insemination success for individual males within the sperm stores of multiply mated females to discover how insemination translates into eventual paternity. Any proposed method must be applicable in organisms without extensive DNA sequence information (which include the majority of model species for sexual selection). Here, we describe the development and application of microsatellite competitive-multiplex-PCR for quantifying relative contributions to a small number of sperm in storage. We studied how DNA template characteristics affect PCR amplification of known concentrations of mixed DNA and generated regressions for correcting observations of allelic signal strength based on such characteristics. We used these methods to examine patterns of sperm storage in twice-mated female yellow dung flies, Scathophaga stercoraria. We confirm previous findings supporting sperm displacement and demonstrate that average paternity for the last mate accords with the mean proportion of sperm stored. We further find consistent skew in storage across spermathecae, with more last male sperm stored in the singlet spermatheca on one side of the body than in the doublet on the opposite side. We also show that the time between copulations may be important for effectively sorting sperm. Finally, we demonstrate that male size may influence the opportunity for sperm choice, suggesting future work to disentangle the roles of male competition and cryptic female choice.  相似文献   

16.
Post-copulatory sexual selection in the form of sperm competition is known to influence the evolution of male reproductive proteins in mammals. The relationship between sperm competition and regulatory evolution, however, remains to be explored. Protamines and transition nuclear proteins are involved in the condensation of sperm chromatin and are expected to affect the shape of the sperm head. A hydrodynamically efficient head allows for fast swimming velocity and, therefore, more competitive sperm. Previous comparative studies in rodents have documented a significant association between the level of sperm competition (as measured by relative testes mass) and DNA sequence evolution in both the coding and promoter sequences of protamine 2. Here, we investigate the influence of sexual selection on protamine and transition nuclear protein mRNA expression in the testes of eight mouse species that differ widely in levels of sperm competition. We also examined the relationship between relative gene expression levels and sperm head shape, assessed using geometric morphometrics. We found that species with higher levels of sperm competition express less protamine 2 in relation to protamine 1 and transition nuclear proteins. Moreover, there was a significant association between relative protamine 2 expression and sperm head shape. Reduction in the relative abundance of protamine 2 may increase the competitive ability of sperm in mice, possibly by affecting sperm head shape. Changes in gene regulatory sequences thus seem to be the basis of the evolutionary response to sexual selection in these proteins.  相似文献   

17.
Divergent sexual selection within allopatric populations may result in divergent sexual phenotypes, which can act as reproductive barriers between populations upon secondary contact. This hypothesis has been most tested on traits involved in precopulatory sexual selection, with less work focusing on traits that act after copulation and before fertilization (i.e., postcopulatory prezygotic traits), particularly in internally fertilizing vertebrates. However, postcopulatory sexual selection within species can also drive trait divergence, resulting in reduced performance of heterospecific sperm within the female reproductive tract. Such incompatibilities, arising as a by‐product of divergent postcopulatory sexual selection in allopatry, can represent reproductive barriers, analogous to species‐assortative mating preferences. Here, we tested for postcopulatory prezygotic reproductive barriers between three pairs of taxa with diverged sperm phenotypes and moderate‐to‐high opportunity for postcopulatory sexual selection (barn swallows Hirundo rustica versus sand martins Riparia riparia, two subspecies of bluethroats, Luscinia svecica svecica versus L. s. namnetum, and great tits Parus major versus blue tits Cyanistes caeruleus). We tested sperm swimming performance in fluid from the outer reproductive tract of females, because the greatest reduction in sperm number in birds occurs as sperm swim across the vagina. Contrary to our expectations, sperm swam equally well in fluid from conspecific and heterospecific females, suggesting that postcopulatory prezygotic barriers do not act between these taxon pairs, at this stage between copulation and fertilization. We therefore suggest that divergence in sperm phenotypes in allopatry is insufficient to cause widespread postcopulatory prezygotic barriers in the form of impaired sperm swimming performance in passerine birds.  相似文献   

18.
During insemination, males of internally fertilizing speciestransfer a complex array of seminal fluid proteins to the femalereproductive tract. These proteins can have profound effectson female reproductive physiology and behavior and are thoughtto mediate postcopulatory sexual selection and intersexual conflict.Such selection may cause seminal fluid to evolve rapidly, withpotentially important consequences for speciation. Here we investigatethe evolution of seminal fluid proteins in a major mammalianradiation, the muroid rodents, by quantifying diversity in seminalfluid proteome composition for the first time across a broadrange of closely related species. Using comparative proteomicstechniques to identify and cross-match proteins, we demonstratethat rodent seminal fluid is highly diverse at the level ofboth proteomes and individual proteins. The striking interspecificheterogeneity in seminal fluid composition revealed by our surveyfar exceeds that seen in a second proteome of comparable complexity,skeletal muscle, indicating that the complement of proteinsexpressed in seminal fluid may be subject to rapid diversification.We further show that orthologous seminal fluid proteins exhibitsubstantial interspecific variation in molecular mass. Becausethis variation cannot be attributed to differential glycosylationor radical differences in termination sites, it is stronglysuggestive of rapid amino acid divergence. Sperm competitionis implicated in generating such divergence for at least onemajor seminal fluid protein in our study, SVS II, which is responsiblefor copulatory plug formation via transglutaminase-catalyzedcross-linking after insemination. We show that the molecularmass of SVS II is positively correlated with relative testissize across species, which could be explained by selection foran increased number of cross-linking sites involved in the formationof the copulatory plug under sperm competition.  相似文献   

19.
An increasing number of molecular studies are indicating that, in a wide variety of species, genes directly related to fertilization evolve at extraordinarily high rates. We try to gain insight into the dynamics of this rapid evolution and its underlying mechanisms by means of a simple theoretical model. In the model, sexual selection and sympatric speciation act together in order to drive rapid divergence of gamete recognition proteins. In this process, intraspecific competition for fertilizations enlarges male gamete protein variation by means of evolutionary branching, which initiates sympatric speciation. In addition, avoidance of competition for fertilizations between the incipient species drives the rapid evolution of gamete recognition proteins. This mechanism can account for both strong stabilizing selection on gamete recognition proteins within species and rapid divergence between species. Moreover, it can explain the empirical finding that the rate of divergence of fertilization genes is not constant, but highest between closely related species.  相似文献   

20.
Reproductive competition generates episodes of both pre‐ and postcopulatory sexual selection. Theoretical models of sperm competition predict that as the fitness gains from expenditure on the weapons of male combat increase, males should increase their expenditure on weapons and decrease their expenditure on traits that contribute to competitive fertilization success. Although traits subject to sexual selection are known to have accelerated evolutionary rates of phenotypic divergence, it is not known whether the competing demands of investment into pre‐ and postcopulatory traits affect their relative rates of evolutionary divergence. We use a comparative approach to estimate the rates of divergence in pre‐ and postcopulatory traits among onthophagine dung beetles. Weapons evolved faster than body size while testes mass and sperm length evolved more slowly than body size, suggesting that precopulatory competition is the stronger episode of sexual selection acting on these beetles. Although horns evolved faster than testes, evolutionary increases in horn length were not associated with evolutionary reductions in testes mass. Our data for onthophagines support the notion that in taxa where males are unable to monopolize paternity, expenditure on both weapons and testes should both be favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号