首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple myeloma (MM) is a haematological malignancy being characterized by clonal plasma cell proliferation in the bone marrow. Targeting the proteasome with specific inhibitors (PIs) has been proven a promising therapeutic strategy and PIs have been approved for the treatment of MM and mantle‐cell lymphoma; yet, while outcome has improved, most patients inevitably relapse. As relapse refers to MM cells that survive therapy, we sought to identify the molecular responses induced in MM cells after non‐lethal proteasome inhibition. By using bortezomib (BTZ), epoxomicin (EPOX; a carfilzomib‐like PI) and three PIs, namely Rub999, PR671A and Rub1024 that target each of the three proteasome peptidases, we found that only BTZ and EPOX are toxic in MM cells at low concentrations. Phosphoproteomic profiling after treatment of MM cells with non‐lethal (IC10) doses of the PIs revealed inhibitor‐ and cell type‐specific readouts, being marked by the activation of tumorigenic STAT3 and STAT6. Consistently, cytokine/chemokine profiling revealed the increased secretion of immunosuppressive pro‐tumorigenic cytokines (IL6 and IL8), along with the inhibition of potent T cell chemoattractant chemokines (CXCL10). These findings indicate that MM cells that survive treatment with therapeutic PIs shape a pro‐tumorigenic immunosuppressive cellular and secretory bone marrow microenvironment that enables malignancy to relapse.  相似文献   

2.
Single agent treatment of the γ-secretase inhibitor (GSI-I) or proteasome inhibitor in anaplastic lymphoma kinase positive anaplastic large cell lymphoma (ALK+ ALCL) shows limited response and considerable toxicity. Here, we examined the effects of the combination of low dose GSI-I and the proteasome inhibitor bortezomib (BTZ) in ALK+ ALCL cells in vivo and in vitro. We found that ALK+ ALCL cells treated with the BTZ and GSI-I combination treatment showed elevated apoptosis, consistent with increased caspase activation, compared with BTZ or GSI-I alone. The combination treatment also inhibited AKT and extracellular signal-related kinase pathways, as well as stress-related cascades, including the c-jun N-terminal kinase and stress-activated kinases. Moreover, combined treatment in a murine xenograft model resulted in increased apoptosis in tumor tissues and reduced tumor growth. Our results reveal the synergistic anti-tumor effects of low dose inhibitors against γ-secretase and the proteasome and suggest the potential application of the tolerable BTZ/GSI-I combined agents in treating ALK+ ALCL in future clinical treatment.  相似文献   

3.
Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First‐in‐class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre‐clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second‐generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second‐generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti‐proteasome therapeutics.  相似文献   

4.
A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.  相似文献   

5.
Experimental data on resistance mechanisms of multiple myeloma (MM) to ixazomib (IXA), a second-generation proteasome inhibitor (PI), are currently lacking. We generated MM cell lines with a 10-fold higher resistance to IXA as their sensitive counterparts, and observed cross-resistance towards the PIs carfilzomib (CFZ) and bortezomib (BTZ). Analyses of the IXA-binding proteasome subunits PSMB5 and PSMB1 show increased PSMB5 expression and activity in all IXA-resistant MM cells, and upregulated PSMB1 expression in IXA-resistant AMO1 cells. In addition, sequence analysis of PSMB5 revealed a p.Thr21Ala mutation in IXA-resistant MM1.S cells, and a p.Ala50Val mutation in IXA-resistant L363 cells, whereas IXA-resistant AMO1 cells lack PSMB5 mutations. IXA-resistant cells retain their sensitivity to therapeutic agents that mediate cytotoxic effects via induction of proteotoxic stress. Induction of ER stress and apoptosis by the p97 inhibitor CB-5083 was strongly enhanced in combination with the PI3Kα inhibitor BYL-719 or the HDAC inhibitor panobinostat suggesting potential therapeutic strategies to circumvent IXA resistance in MM. Taken together, our newly established IXA-resistant cell lines provide first insights into resistance mechanisms and overcoming treatment strategies, and represent suitable models to further study IXA resistance in MM.  相似文献   

6.
ABSTRACT

Introduction: Proteasome inhibitors (PIs) are therapeutic backbones of multiple myeloma treatment, with PI-based therapies being standards of care throughout the treatment algorithm. Proteasome inhibition affects multiple critical signaling pathways in myeloma cells and interacts synergistically with mechanisms of action of other conventional and novel agents, resulting in substantial anti-myeloma activity and at least additive effects.

Areas covered: This review summarizes the biologic effects of proteasome inhibition in myeloma and provides an overview of the importance of proteasome inhibition to the current treatment algorithm. It reviews key clinical data on three PIs, specifically bortezomib, carfilzomib, and ixazomib; assesses ongoing phase 3 trials with these agents; and looks ahead to the increasingly broad role of both approved PIs and PIs under investigation in the frontline and relapsed settings.

Expert commentary: Progress to date with PIs in multiple myeloma has been impressive, but there remain unmet needs and challenges, as well as increasing opportunities to optimize the use of these agents. Understanding discrepancies between PIs in terms of efficacy and safety profile is a key goal of ongoing research, along with proteomics-based efforts to identify potential biomarkers of sensitivity and resistance, thereby enabling increasingly personalized treatment approaches in the future.  相似文献   

7.
8.
BackgroundThe proteasome inhibitor bortezomib (BTZ) has significantly improved the survival of multiple myeloma (MM) patients. However, most MM patients still relapse and have drug resistance after BTZ treatment.MethodssiRNA transfection was performed to knock down BDNF and TrkB expression. ELISA, western blot, quantitative polymerase chain reaction, CCK-8 assay, and flow cytometry analysis were performed to analyze the functions of BDNF/TrkB signaling in MM cells.ResultsWe identified a cell-autonomous mechanism that promotes BTZ resistance in MM, prolongs their RPMI 8226/BTZ resistant cell survival and optimizes their proliferating function. Specifically, RPMI 8226/BTZ cells produced the brain derived neurotrophic factor (BDNF) and its receptor TrkB, which served as a survival factor in the RPMI 8226/BTZ resistant environment. BDNF/TrkB induced phosphorylation of STAT3 that upregulated the bone morphogenetic protein/retinoic acid inducible neural-specific 3 (BRINP3).ConclusionsBDNF/TrkB enhanced downstream pathway expression of phosphorylation STAT3 and BRINP3 molecules, promoting RPMI 8226/BTZ cell proliferation and survival.General significanceThese data place BDNF/TrkB at the top of a pSTAT3-BRINP3 survival pathway and link adaptability to BTZ resistant conditions in MM disease.  相似文献   

9.
10.
High-risk neuroblastoma (NB) is characterized by the development of chemoresistance, and bortezomib (BTZ), a selective inhibitor of proteasome, has been proposed in order to overcome drug resistance. Considering the involvement of the nuclear factor-erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the antioxidant and detoxifying ability of cancer cells, in this study we have investigated their role in differently aggressive NB cell lines treated with BTZ, focusing on the modulation of HO-1 to improve sensitivity to therapy. We have shown that MYCN amplified HTLA-230 cells were slightly sensitive to BTZ treatment, due to the activation of Nrf2 that led to an impressive up-regulation of HO-1. BTZ-treated HTLA-230 cells down-regulated p53 and up-regulated p21, favoring cell survival. The inhibition of HO-1 activity obtained by Zinc (II) protoprophyrin IX (ZnPPIX) was able to significantly increase the pro-apoptotic effect of BTZ in a p53- and p21-independent way. However, MYCN non-amplified SH-SY5Y cells showed a greater sensitivity to BTZ in relation to their inability to up-regulate HO-1. Therefore, we have shown that HO-1 inhibition improves the sensitivity of aggressive NB to proteasome inhibition-based therapy, suggesting that HO-1 up-regulation can be used as a marker of chemoresistance in NB. These results open up a new scenario in developing a combined therapy to overcome chemoresistance in high-risk neuroblastoma.  相似文献   

11.
12.
Due to their tremendous apoptosis-inducing potential, proteasomal inhibitors (PIs) have recently entered clinical trials. Here we show, however, that various PIs rescued proliferating tumor cells from death receptor-induced apoptosis. This protection correlated with the stabilization of X-linked IAP (XIAP) and c-FLIP and the inhibition of caspase activation. Together with the observation that PIs could not protect cells expressing XIAP or c-FLIP short interfering RNAs (siRNAs) from death receptor-induced apoptosis, our results demonstrate that PIs mediate their protective effect via the stabilization of these antiapoptotic proteins. Furthermore, we show that once these proteins were eliminated, either by long-term treatment with death receptor ligands or by siRNA-mediated suppression, active caspases accumulated to an even larger extent in the presence of PIs. Together, our data support a biphasic role for the proteasome in apoptosis, as they show that its constitutive activity is crucial for the rapid initiation of the death program by eliminating antiapoptotic proteins, whereas at later stages, the proteasome acts in an antiapoptotic manner due to the proteolysis of caspases. Thus, for a successful PI-based tumor therapy, it is crucial to carefully evaluate basal proteasomal activity and the status of antiapoptotic proteins, as their PI-mediated prolonged stability might even cause adverse effects, leading to the survival of a tumor.  相似文献   

13.
B淋巴细胞表面分子靶向治疗类风湿关节炎的研究进展   总被引:1,自引:0,他引:1  
Di W  Chang Y  Wu YJ  Wei W 《生理科学进展》2011,42(3):175-180
类风湿关节炎(rheumatoid arthritis,RA)是一种慢性、系统性的自身免疫性疾病,迄今病因尚不明确,且缺乏针对其安全有效的治疗药物.由于B淋巴细胞在RA致病机制中的重要作用,近年来不断有针对B淋巴细胞上不同靶点的治疗药物推出.这些B淋巴细胞靶向生物制剂包括针对CD20分子的抗CD20单克隆抗体,如rituximab、ocrelizumab和ofatumumab等;针对B淋巴细胞刺激因子(B lymphocyte stimulator,BLyS)及其受体的belimumab和atacicept等以及处于初期研究阶段的抗CD22单克隆抗体和B、T淋巴细胞之间CD40/CD40L共刺激反应阻断剂等.上述靶向制剂的疗效在对RA及其动物模型的治疗中得到了证实,提示将B淋巴细胞作为RA治疗靶点是一项非常有前景的治疗策略.  相似文献   

14.
Due to the unsatisfied effects of clinical drugs used in rheumatoid arthritis (RA), investigators shifted their focus on the biotherapy. Although human gingival mesenchymal stem cells (GMSC) have the potential to be used in treating RA, GMSC‐based therapy has some inevitable side effects such as immunogenicity and tumorigenicity. As one of the most important paracrine mediators, GMSC‐derived exosomes (GMSC‐Exo) exhibit therapeutic effects via immunomodulation in a variety of disease models, bypassing potential shortcomings of the direct use of MSCs. Furthermore, exosomes are not sensitive to freezing and thawing, and can be readily available for use. GMSC‐Exo has been reported to promote tissue regeneration and wound healing, but have not been reported to be effective against autoimmune diseases. We herein compare the immunomodulatory functions of GMSC‐Exo and GMSC in collagen‐induced arthritis (CIA) model and in vitro CD4+ T‐cell co‐culture model. The results show that GMSC‐Exo has the same or stronger effects compared with GMSC in inhibiting IL‐17A and promoting IL‐10, reducing incidences and bone erosion of arthritis, via inhibiting IL‐17RA‐Act1‐TRAF6‐NF‐κB signal pathway. Our results suggest that GMSC‐Exo has many advantages in treating CIA, and may offer a promising new cell‐free therapy strategy for RA and other autoimmune diseases.  相似文献   

15.
Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be achieved. Here we developed and applied a dual-fluorescence-based Protein Turnover Assay (ProTA) to quantitatively profile global changes in human protein degradome upon BTZ-induced proteasomal inhibition. ProTA and subsequent network analyses delineate potential molecular basis for BTZ action and tumor drug resistance in BTZ chemotherapy. Finally, combined use of BTZ with drugs targeting the ProTA-identified key genes or pathways in BTZ action reduced BTZ resistance in multiple myeloma cells. Remarkably, BTZ stabilizes proteasome subunit PSMC1 and proteasome assembly factor PSMD10, suggesting a previously under-appreciated mechanism for regulating proteasome homeostasis. Therefore, ProTA is a novel tool for profiling human protein degradome to elucidate potential mechanisms of drug action and resistance, which might facilitate therapeutic development targeting proteostasis to treat human disorders.  相似文献   

16.
17.

Background

A pathogenic hallmark of rheumatoid arthritis (RA) is persistent inflammatory responses in target tissues and organs. Immune responses mediated by T cells and autoantibodies are known to play pivotal roles. A possible interpretation for this observation is a loss of negative regulation of autoimmune responses. Here we sought to investigate whether B7-H4, a cell surface inhibitory molecule of the B7-CD28 signaling pathway, may play a role in the pathogenesis of RA.

Methods and Findings

In a cross-sectional study of a clinical convenience sample using monoclonal antibodies against human B7-H4 molecules, we detected high levels of the soluble form of B7-H4 (sH4) in the sera of 65% of patients with RA (n = 68) versus only 13% of healthy donors (n = 24). Elevated sH4 was associated with an increased disease severity score (DAS28) in a cross-sectional analysis. In a mouse model of RA, transgenic expression of sH4 or genetic deletion of B7-H4 accelerated the progression of collagen-induced arthritis, accompanied by enhanced T and B cell–mediated autoimmune responses as well as increased activity of neutrophils. Expression in vivo of an agonist, a B7-H4-immunoglobulin Fc fusion protein, profoundly suppressed disease progression in the mouse model.

Conclusions

Our findings in mice indicate that sH4 acts as a decoy molecule to block the inhibitory functions of cell-surface B7-H4, leading to exacerbation of collagen-induced arthritis. If the preliminary correlation between sH4 levels and disease activity in patients with RA can be confirmed to reflect a similar mechanism, these findings suggest a novel target for treatment approaches. Please see later in the article for the Editors'' Summary  相似文献   

18.
Proteasomes play a key role in maintaining cellular homeostasis by the proteolytic removal of proteins, including ubiquitinated proteins and/or oxidatively-damaged proteins. The proteasome inhibitor bortezomib (BTZ) has been reported to exert testicular toxicity in mice. In the current study, we treated SOD1-knockout (KO) mice with BTZ and investigated the issue of whether oxidative stress is involved in the development of testicular toxicity. The BTZ treatment significantly increased superoxide production and cell death in the testes of SOD1-KO mice compared to wild-type (WT) mice. We also found that high levels of both ubiquitinated proteins and p62 accumulated and underwent aggregation in the seminiferous tubules of BTZ-injected SOD1-KO mice. Furthermore, the proteolytic activities of proteasomes were significantly decreased in the testes of BTZ-injected SOD1-KO mice compared to their WT counterparts. These results suggest that a combination of oxidative stress caused by an SOD1 deficiency and proteasome inhibition by BTZ accelerates the impairment of proteasomes, which results in severe testicular damage in SOD1-KO mice.  相似文献   

19.
Proteasomes are multicatalytic protease complexes in the cell, involved in the non-lysosomal recycling of intra-cellular proteins. Proteasomes play a critical role in regulation of cell division in both normal as well as cancer cells. In cancer cells this homeostatic function is deregulated leading to the hyperactivation of the proteasomes. Proteasome inhibitors (PIs) are a class of compounds, which either reversibly or irreversibly block the activity of proteasomes and induce cancer cell death. Interference of PIs with the ubiquitin proteasome pathway (UPP) involved in protein turnover in the cell leads to the accumulation of proteins engaged in cell cycle progression, which ultimately put a halt to cancer cell division and induce apoptosis. Upregulation of many tumor suppressor proteins involved in cell cycle arrest are known to play a role in PI induced cell cycle arrest in a variety of cancer cells. Although many PIs target the proteasomes, not all of them are effective in cancer therapy. Some cancers develop resistance against proteasome inhibition by possibly activating compensatory signaling pathways. However, the details of the activation of these pathways and their contribution to resistance to PI therapy remain obscure. Delineation of these pathways may help in checking resistance against PIs and deducing effective combinational approaches for improved treatment strategies. This review will discuss some of the signaling pathways related to proteasome inhibition and cell division that may help explain the basis of resistance of some cancers to proteasome inhibitors and underline the need for usage of PIs in combination with traditional chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号