首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ebola virus infection causes severe hemorrhagic fevers with high fatality rates up to 90% in humans, for which no effective treatment is currently available. The ongoing Ebola outbreak in West Africa that has caused over 14,000 human infections and over 5000 deaths underscores its serious threat to the public health. While licensed vaccines against Ebola virus infection are still not available, a number of vaccine approaches have been developed and shown to protect against lethal Ebola virus infection in animal models. This review aims to summarize the advancement of different strategies for Ebola vaccine development with a focus on the discussion of their protective efficacies and possible limitations. In addition, the development of animal models for efficacy evaluation of Ebola vaccines and the mechanism of immune protection against Ebola virus infection are also discussed.  相似文献   

3.
Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8(+) T-cell responses to six Ebola virus proteins were examined. CD8(+) T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8(+) cytotoxic T cells protected filovirus na?ve mice from challenge with Ebola virus. These data support a role for CD8(+) cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.  相似文献   

4.
Ebola and Marburg viruses are the causative agents of rapidly progressive hemorrhagic fevers with high mortality rates. Pre- or post-exposure treatments against the diseases are currently not available for human use. In the field, establishment of strict quarantine measures preventing further virus transmission are still the only way to fight the infections. However, our knowledge of Ebola and Marburg viruses has markedly increased as a result of two recent discoveries discussed in this review. Chandran et al. have elucidated the mechanism by which Ebola GP is converted to a fusion-active form. Infectivity of Ebola virus was shown to be dependent on the cleavage of GP by cellular endosomal proteases, cathepsin B and L, thus opening new therapeutic approaches options. As for Jones SM et al., they have successfully vaccinated monkeys with recombinant vesicular stomatitis virus expressing Ebola or Marburg virus surface glycoprotein GP, a promising vaccine approach.  相似文献   

5.
Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.  相似文献   

6.
Ebola virus causes lethal hemorrhagic disease in humans, yet there are still no satisfactory biological explanations to account for its extreme virulence. This review focuses on recent findings relevant to understanding the pathogenesis of Ebola virus infection and developing vaccines and effective therapy. The available data suggest that the envelope glycoprotein and the interaction of some viral proteins with the immune system are likely to play important roles in the extraordinary pathogenicity of this virus. There are also indications that genetically engineered vaccines, including plasmid DNA and viral vectors expressing Ebola virus proteins, and passive transfer of neutralizing antibodies could be feasible options for the control of Ebola virus-associated disease.  相似文献   

7.
The ecology of Ebola virus   总被引:3,自引:0,他引:3  
Since Ebola virus was first identified more than 30 years ago, tremendous progress has been made in understanding the molecular biology and pathogenesis of this virus. However, the means by which Ebola virus is maintained and transmitted in nature remains unclear despite dedicated efforts to answer these questions. Recent work has provided new evidence that fruit bats might have a role as a reservoir species, but it is not clear whether other species are also involved or how transmission to humans or apes takes place. Two opposing hypotheses for Ebola emergence have surfaced; one of long-term local persistence in a cryptic and infrequently contacted reservoir, versus another of a more recent introduction of the virus and directional spread through susceptible populations. Nevertheless, with the increasing frequency of human filovirus outbreaks and the tremendous impact of infection on the already threatened great ape populations, there is an urgent need to better understand the ecology of Ebola virus in nature.  相似文献   

8.
The activity of antibodies against filoviruses is poorly understood but has important consequences for vaccine design and passive prophylaxis. To investigate this activity, a panel of recombinant human monoclonal antibodies to Ebola virus antigens was isolated from phage display libraries constructed from RNA from donors who recovered from infection in the 1995 Ebola virus outbreak in Kikwit, Democratic Republic of Congo. Antibodies reactive with nucleoprotein (NP), envelope glycoprotein (GP), and secreted envelope glycoprotein (sGP) were characterized by immunofluorescence and radioimmunoprecipitation assays. Four antibodies reacting strongly with sGP and weakly with GP and two antibodies reacting with NP were not neutralizing. An antibody specific for GP neutralized Ebola virus to 50% at 0.4 microgram/ml as the recombinant Fab fragment and to 50% at 0.3 microgram/ml (90% at 2.6 microgram/ml) as the corresponding whole immunoglobulin G1 molecule. The studies indicate that neutralizing antibodies are produced in infection by Ebola virus although probably at a relatively low frequency. The neutralizing antibody may be useful in vaccine design and as a prophylactic agent against Ebola virus infection.  相似文献   

9.
Huang Y  Xu L  Sun Y  Nabel GJ 《Molecular cell》2002,10(2):307-316
Ebola virus encodes seven viral structural and regulatory proteins that support its high rates of replication, but little is known about nucleocapsid assembly of this virus in infected cells. We report here that three viral proteins are necessary and sufficient for formation of Ebola virus particles and that intracellular posttranslational modification regulates this process. Expression of the nucleoprotein (NP) and virion-associated proteins VP35 and VP24 led to spontaneous assembly of nucleocapsids in transfected 293T cells by transmission electron microscopy. A specific biochemical interaction of these three proteins was demonstrated, and, interestingly, O-glycosylation and sialation of NP were demonstrated and necessary for their association. This distinct mechanism of regulation for filovirus assembly suggests new approaches for viral therapies and vaccines for Ebola and related viruses.  相似文献   

10.
Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release.  相似文献   

11.
Cytotoxic T lymphocytes (CTLs) are proposed to be critical for protection from intracellular pathogens such as Ebola virus. However, there have been no demonstrations that protection against Ebola virus is mediated by Ebola virus-specific CTLs. Here, we report that C57BL/6 mice vaccinated with Venezuelan equine encephalitis virus replicons encoding the Ebola virus nucleoprotein (NP) survived lethal challenge with Ebola virus. Vaccination induced both antibodies to the NP and a major histocompatibility complex class I-restricted CTL response to an 11-amino-acid sequence in the amino-terminal portion of the Ebola virus NP. Passive transfer of polyclonal NP-specific antiserum did not protect recipient mice. In contrast, adoptive transfer of CTLs specific for the Ebola virus NP protected unvaccinated mice from lethal Ebola virus challenge. The protective CTLs were CD8(+), restricted to the D(b) class I molecule, and recognized an epitope within amino acids 43 to 53 (VYQVNNLEEIC) in the Ebola virus NP. The demonstration that CTLs can prevent lethal Ebola virus infection affects vaccine development in that protective cellular immune responses may be required for optimal protection from Ebola virus.  相似文献   

12.
Full-length nucleoproteins from Ebola and Marburg viruses were expressed as His-tagged recombinant proteins in Escherichia coli and nucleoprotein-based enzyme-linked immunosorbent assays(ELISAs) were established for the detection of antibodies specific to Ebola and Marburg viruses. The ELISAs were evaluated by testing antisera collected from rabbit immunized with Ebola and Marburg virus nucleoproteins. Although little cross-reactivity of antibodies was observed in antiEbola virus nucleoprotein rabbit antisera, the highest reactions to immunoglobulin G(Ig G) were uniformly detected against the nucleoprotein antigens of homologous viruses. We further evaluated the ELISA's ability to detect antibodies to Ebola and Marburg viruses using human sera samples collected from individuals passing through the Guangdong port of entry. With a threshold set at the mean plus three standard deviations of average optical densities of sera tested, the ELISA systems using these two recombinant nucleoproteins have good sensitivity and specificity. These results demonstrate the usefulness of ELISA for diagnostics as well as ecological and serosurvey studies of Ebola and Marburg virus infection.  相似文献   

13.
埃博拉病毒可以引起一种人畜共患烈性传染病,即埃博拉出血热,此病于1976年始发于埃博拉河流域,并且于该区域严重流行,故而得名。人类一旦感染埃博拉病毒,死亡率可高达88%,从而引起医学界的广泛关注,世界卫生组织已将埃博拉病毒列为对人类危害最为严重的病毒之一。深入地了解埃博拉出血热及埃博拉病毒,及其致病机理,对于埃博拉出血热的预防和控制具有非常重要的意义。  相似文献   

14.
埃博拉病毒(EBOV)是一种高致死性的病毒,在其RNA编码的7种蛋白中,糖蛋白GP、基质蛋白VP40以及膜蛋白VP24在病毒粒子的装配、出芽以及致病过程中起着关键的作用。详细介绍了这三种蛋白的结构、功能以及作用机制的最新研究进展,并对EBOV蛋白的研究前景作出了展望。  相似文献   

15.
16.
Full-length nucleoproteins from Ebola and Marburg viruses were expressed as His-tagged recombinant proteins in Escherichia coli and nucleoprotein-based enzyme-linked immunosorbent assays (ELISAs) were established for the detection of antibodies specific to Ebola and Marburg viruses. The ELISAs were evaluated by testing antisera collected from rabbit immunized with Ebola and Marburg virus nucleoproteins. Although little cross-reactivity of antibodies was observed in anti-Ebola virus nucleoprotein rabbit antisera, the highest reactions to immunoglobulin G (IgG) were uniformly detected against the nucleoprotein antigens of homologous viruses. We further evaluated the ELISA’s ability to detect antibodies to Ebola and Marburg viruses using human sera samples collected from individuals passing through the Guangdong port of entry. With a threshold set at the mean plus three standard deviations of average optical densities of sera tested, the ELISA systems using these two recombinant nucleoproteins have good sensitivity and specificity. These results demonstrate the usefulness of ELISA for diagnostics as well as ecological and serosurvey studies of Ebola and Marburg virus infection.  相似文献   

17.
The number of fatalities and economic losses caused by the Ebola virus infection across the planet culminated in the havoc that occurred between August and November 2014. However, little is known about the molecular protein profile of this devastating virus. This work represents a thorough bioinformatics analysis of the regularities of charge distribution (polar profiles) in two groups of proteins and their functional domains associated with Ebola virus disease: Ebola virus proteins and Human proteins interacting with Ebola virus. Our analysis reveals that a fragment exists in each of these proteins—one named the “functional domain”—with the polar profile similar to the polar profile of the protein that contains it. Each protein is formed by a group of short sub-sequences, where each fragment has a different and distinctive polar profile and where the polar profile between adjacent short sub-sequences changes orderly and gradually to coincide with the polar profile of the whole protein. When using the charge distribution as a metric, it was observed that it effectively discriminates the proteins from their functional domains. As a counterexample, the same test was applied to a set of synthetic proteins built for that purpose, revealing that any of the regularities reported here for the Ebola virus proteins and human proteins interacting with Ebola virus were not present in the synthetic proteins. Our results indicate that the polar profile of each protein studied and its corresponding functional domain are similar. Thus, when building each protein from its functional domai—adding one amino acid at a time and plotting each time its polar profile—it was observed that the resulting graphs can be divided into groups with similar polar profiles.  相似文献   

18.
Ebola virus is one of the most threatening pathogens with the mortality rate as high as 90% in the world. There are no licensed therapeutic drugs or preventive vaccines for Ebola hemorrhagic fever up to date. Favipiravir, a novel antiviral drug which was mainly used for the treatment of influenza, now has been demonstrated to have a curative effect in treating Ebola virus infection. In this review, we present an overview of recent progress on the treatment of Ebola virus disease with Favipiravir and describe its possible mechanism. Moreover, we give a brief summary of other related treatment strategies against Ebola.  相似文献   

19.
对国内埃博拉病毒诊疗检测产品的近期研究成果及相关专利进行总结归纳,旨在为埃博拉病毒检测试剂及治疗药物的进一步开发提供参考。  相似文献   

20.
At 739 amino acids, the nucleoprotein (NP) of Ebola virus is the largest nucleoprotein of the nonsegmented negative-stranded RNA viruses, and like the NPs of other viruses, it plays a central role in virus replication. Huang et al. (Y. Huang, L. Xu, Y. Sun, and G. J. Nabel, Mol. Cell 10:307-316, 2002) previously demonstrated that NP, together with the minor matrix protein VP24 and polymerase cofactor VP35, is necessary and sufficient for the formation of nucleocapsid-like structures that are morphologically indistinguishable from those seen in Ebola virus-infected cells. They further showed that NP is O glycosylated and sialylated and that these modifications are important for interaction between NP and VP35. However, little is known about the structure-function relationship of Ebola virus NP. Here, we examined the glycosylation of Ebola virus NP and further investigated its properties by generating deletion mutants to define the region(s) involved in NP-NP interaction (self-assembly), in the formation of nucleocapsid-like structures, and in the replication of the viral genome. We were unable to identify the types of glycosylation and sialylation, although we did confirm that Ebola virus NP was glycosylated. We also determined that the region from amino acids 1 to 450 is important for NP-NP interaction (self-assembly). We further demonstrated that these amino-terminal 450 residues and the following 150 residues are required for the formation of nucleocapsid-like structures and for viral genome replication. These data advance our understanding of the functional region(s) of Ebola virus NP, which in turn should improve our knowledge of the Ebola virus life cycle and its extreme pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号