首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation aimed to develop nimesulide (NMS)-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticulate formulations as a biodegradable polymeric drug carrier to treat rheumatoid arthritis. Polymeric nanoparticles (NPs) were prepared with two different nonionic surfactants, vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) and poly(vinyl alcohol) (PVA), using an ultrasonication solvent evaporation technique. Nine batches were formulated for each surfactant using a 32 factorial design for optimal concentration of the emulsifying agents, 0.03–0.09% for vitamin E TPGS and 2–4% for PVA. The surfactant percentage and the drug/polymer ratio (1:10, 1:15, 1:20) of the NMS-loaded NPs were investigated based on four responses: encapsulation efficiency, particle size, the polydispersity index, and the surface charge. The response surface plots and linearity curves indicated a relationship between the experiment’s responses and a set of independent variables. The NPs produced with both surfactants exhibited a negative surface charge, and scanning electron micrographs revealed that all of the NPs were spherical in shape. A narrower size distribution and higher drug loadings were achieved in PVA-emulsified PLGA NPs than in the vitamin E TPGS emulsified. Decreasing amounts of both nonionic surfactants resulted in a reduction in the emulsion’s viscosity, which led to a decrease in the particle size of NPs. According to the ANOVA results obtained in this present research, vitamin E TPGS exhibited the best correlation between the independent variables, namely drug/polymer ratio and the surfactant percentage, and the dependent variables (encapsulation efficiency R2 = 0.9603, particle size R2 = 0.9965, size distribution R2 = 0.9899, and surface charge R2 = 0.8969) compared with PVA.KEY WORDS: ANOVA, factorial design, nanoparticles, nimesulide, PLGA, PVA, vitamin E TPGS  相似文献   

2.
IntroductionAlthough rheumatoid arthritis (RA) is generally a chronic disease, a proportion of RA-patients achieve disease-modifying antirheumatic drug (DMARD)-free sustained remission, reflecting loss of disease-persistence. To explore mechanisms underlying RA-persistence, we performed a candidate gene study. We hypothesized that variants associating with lack of radiographic progression also associate with DMARD-free sustained remission.Methods645 Dutch RA-patients were studied on DMARD-free sustained remission during a maximal follow-up duration of 10-years. Variants associated with radiographic progression under an additive model in the total RA-population (Human Leukocyte Antigens (HLA)-DRB1-shared epitope (SE), Dickkopf-1 (DKK1)-rs1896368, DKK1-rs1896367, DKK1-rs1528873, C5Orf30-rs26232, Interleukin-2 receptor-α (IL2RA)-rs2104286, Matrix metalloproteinase-9 (MMP-9)-rs11908352, rs451066 and Osteoprotegerin (OPG)-rs1485305) were studied. Cox-regression analyses were performed and Bonferroni correction applied. Soluble IL2Rα (sIL2Rα)-levels were studied. For replication, 622 RA-patients included in the French Evaluation et Suivi de POlyarthrites Indifférenciées Récentes cohort (ESPOIR)-cohort were investigated. Results were combined in inverse-variance weighted meta-analysis.ResultsSimilar as previously reported, the SE-alleles associated with less remission (hazard ratio (HR) = 0.57, 95 % confidence interval (95 % CI) = 0.42-0.77, p = 2.72×10−4). Variants in DKK-1, C5orf30, MMP-9 and OPG were not associated with remission. The IL2RA-rs2104286 minor allele associated with a higher chance on remission (HR = 1.52, 95 % CI = 1.16-1.99, p = 2.44×10−3). The rs2104286 minor allele associated with lower sIL2Rα-levels (p = 1.44×10−3); lower sIL2Rα-levels associated with a higher chance on remission (HR per 100 pg/L = 0.81, 95 % CI = 0.68-0.95, p = 0.012). When including rs2104286 and sIL2Rα-levels in one analysis, the HR for rs2104286 was 2.27 (95 % CI = 1.06-4.84, p = 0.034) and for sIL2Rα 0.83 (95 % CI = 0.70-0.98, p = 0.026). Within ESPOIR, the HR of rs2104286 was 1.31 (95 % CI = 0.90-1.90). The meta-analysis revealed a p-value of 1.01×10−3.ConclusionIL2RA-rs2104286 and sIL2Rα-level associated with RA-persistence. IL2RA variants are known to protect against multiple sclerosis, diabetes mellitus and RA. Besides HLA-SE, IL2RA-rs2104286 is thus far the only known genetic variant associated with both joint destruction and RA-persistence. This underlines the relevance of IL2RA for RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0739-6) contains supplementary material, which is available to authorized users.  相似文献   

3.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

4.

Introduction

Radiography is an unreliable and insensitive tool for the assessment of structural lesions in the sacroiliac joints (SIJ). Magnetic resonance imaging (MRI) detects a wider spectrum of structural lesions but has undergone minimal validation in prospective studies. The Spondyloarthritis Research Consortium of Canada (SPARCC) MRI Sacroiliac Joint (SIJ) Structural Score (SSS) assesses a spectrum of structural lesions (erosion, fat metaplasia, backfill, ankylosis) and its potential to discriminate between therapies requires evaluation.

Methods

The SSS score assesses five consecutive coronal slices through the cartilaginous portion of the joint on T1-weighted sequences starting from the transitional slice between cartilaginous and ligamentous portions of the joint. Lesions are scored dichotomously (present/absent) in SIJ quadrants (fat metaplasia, erosion) or halves (backfill, ankylosis). Two readers independently scored 147 pairs (baseline, 2 years) of scans from a prospective cohort of patients with SpA who received either standard (n = 69) or tumor necrosis factor alpha (TNFα) inhibitor (n = 78) therapy. Smallest detectable change (SDC) was calculated using analysis of variance (ANOVA), discrimination was assessed using Guyatt’s effect size, and treatment group differences were assessed using t-tests and the Mann–Whitney test. We identified baseline demographic and structural damage variables associated with change in SSS score by univariate analysis and analyzed the effect of treatment by multivariate stepwise regression adjusted for severity of baseline structural damage and demographic variables.

Results

A significant increase in mean SSS score for fat metaplasia (P = 0.017) and decrease in mean SSS score for erosion (P = 0.017) was noted in anti-TNFα treated patients compared to those on standard therapy. Effect size for this change in SSS fat metaplasia and erosion score was moderate (0.5 and 0.6, respectively). Treatment and baseline SSS score for erosion were independently associated with change in SSS erosion score (β = 1.75, P = 0.003 and β = 0.40, P < 0.0001, respectively). Change in ASDAS (β = −0.46, P = 0.006), SPARCC MRI SIJ inflammation (β = −0.077, P = 0.019), and baseline SSS score for fat metaplasia (β = 0.085, P = 0.034) were independently associated with new fat metaplasia.

Conclusion

The SPARCC SSS method for assessment of structural lesions has discriminative capacity in demonstrating significantly greater reduction in erosion and new fat metaplasia in patients receiving anti-TNFα therapy.  相似文献   

5.
Nicotine replacement therapy (NRT) improves the long-term success rate of smoking cessation, but induces oxidative stress and inflammatory responses that may delay the restoration of vascular endothelial function (VEF). No studies have examined co-therapy of NRT-assisted smoking abstinence with γ-tocopherol (γ-T), a vitamin E form with antioxidant and anti-inflammatory activities, on improvements in VEF. In a randomized, double-blind, placebo-controlled study, healthy smokers (25 ± 1 y old; mean ± SEM) received NRT and abstained from smoking for 24 h with placebo (n = 12) or oral administration of γ-T-rich mixture of tocopherols (γ-TmT; n = 11) that provided 500 mg γ-T. Brachial artery flow-mediated dilation (FMD), and biomarkers of nitric oxide metabolism, antioxidant status, inflammation, and lipid peroxidation [8-iso-prostaglandin F stereoisomers (8-iso-15(R)-PGF and 8-iso-15(S)-PGF)] were measured prior to and after 24 h of smoking abstinence. Smoking abstinence with NRT regardless of γ-TmT similarly decreased urinary naphthol (P < 0.05) without affecting plasma cotinine. γ-TmT increased plasma γ-T by 4-times and the urinary metabolite of γ-T, γ-carboxyethyl-chromanol, by three times. Smoking abstinence with γ-TmT, but not smoking abstinence alone, increased FMD without affecting plasma nitrate/nitrite or the ratio of asymmetric dimethylarginine/arginine. Urinary 8-iso-15(S)-PGF decreased only in those receiving γ-TmT and was inversely correlated to FMD (R = −0.43, P < 0.05). Circulating markers of inflammation were unaffected by smoking abstinence or γ-TmT. Short-term NRT-assisted smoking abstinence with γ-TmT, but not NRT-assisted smoking abstinence alone, improved VEF by decreasing 8-iso-15(S)-PGF, a vasoconstrictor that was otherwise unaffected by NRT-assisted smoking abstinence.  相似文献   

6.
7.
The objective of this study was to develop a clear, aqueous rapamycin-loaded mixed nanomicellar formulations (MNFs) for the back-of-the-eye delivery. MNF of rapamycin (0.2%) was prepared with vitamin E tocopherol polyethylene glycol succinate (TPGS) (Vit E TPGS) and octoxynol-40 (Oc-40) as polymeric matrix. MNF was characterized by various parameters such as size, charge, shape, and viscosity. Proton nuclear magnetic resonance (1H NMR) was used to identify unentrapped rapamycin in MNF. Cytotoxicity was evaluated in human retinal pigment epithelial (D407) and rabbit primary corneal epithelial cells (rPCECs). In vivo posterior ocular rapamycin distribution studies were conducted in male New Zealand white rabbits. The optimized MNF has excellent rapamycin entrapment and loading efficiency. The average size of MNF was 10.98 ± 0.089 and 10.84 ± 0.11 nm for blank and rapamycin-loaded MNF, respectively. TEM analysis revealed that nanomicelles are spherical in shape. Absence of free rapamycin in the MNF was confirmed by 1H NMR studies. Neither placebo nor rapamycin-loaded MNF produced cytotoxicity on D407 and rPCECs indicating formulations are tolerable. In vivo studies demonstrated a very high rapamycin concentration in retina-choroid (362.35 ± 56.17 ng/g tissue). No drug was identified in the vitreous humor indicating the sequestration of rapamycin in lipoidal retinal tissues. In summary, a clear, aqueous MNF comprising of Vit E TPGS and Oc-40 loaded with rapamycin was successfully developed. Back-of-the-eye tissue distribution studies demonstrated a very high rapamycin levels in retina-choroid (place of drug action) with a negligible drug partitioning into vitreous humor.KEY WORDS: back-of-the-eye, drug delivery, formulation, mixed nanomicelles, posterior, rabbits, rapamycin/sirolimus, retina/choroid, sclera, topical eye drops  相似文献   

8.

Background

In the present study, we examined the inhibitory effects of a methanolic extract, dichloromethane fraction, water layer, and polyhydroxylated sterols (1–4) isolated from the Vietnamese starfish Protoreaster nodosus on pro-inflammatory cytokine (IL-12 p40, IL-6, and TNF-α) production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) using enzyme-linked immunosorbent assays (ELISA).

Results

The methanolic extract and dichloromethane fraction exerted potent inhibitory effects on the production of all three pro-inflammatory cytokines, with IC50 values ranging from 0.60 ± 0.01 to 26.19 ± 0.64 μg/mL. Four highly pure steroid derivatives (1–4) were isolated from the dichloromethane fraction and water layer of P. nodosus. Potent inhibitory activities were also observed for (25S) 5α-cholestane-3β,4β,6α,7α,8β,15α,16β,26-octol (3) on the production of IL-12 p40 and IL-6 (IC50s = 3.11 ± 0.08 and 1.35 ± 0.03 μM), and for (25S) 5α-cholestane-3β,6α,8β,15α,16β,26-hexol (1) and (25S) 5α-cholestane-3β,6α,7α,8β,15α,16β,26-heptol (2) on the production of IL-12 p40 (IC50s = 0.01 ± 0.00 and 1.02 ± 0.01 μM). Moreover, nodososide (4) exhibited moderate inhibitory effects on IL-12 p40 and IL-6 production.

Conclusion

This is the first report of the anti-inflammatory activity from the starfish P. nodosus. The main finding of this study is the identification oxygenated steroid derivatives from P. nodosus with potent anti-inflammatory activities that may be developed as therapeutic agents for inflammatory diseases.  相似文献   

9.
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3 + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.  相似文献   

10.
In the current study, we designed and synthesised a novel series of 2-(2,6-dioxopiperidin-3-yl)isoquinoline-1,3(2H,4H)-dione derivatives as cereblon (CRBN) modulators. The results of the CCK8 assay revealed potent antiproliferative activity for the selected compound 10a against NCI-H929 (IC50=2.25 µM) and U239 (IC50=5.86 µM) cell lines. Compound 10a also can inhibit the TNF-α level (IC50=0.76 µM) in LPS stimulated PMBC and showed nearly no toxicity to this normal human cell line. The TR-FRET assay showed compound 10a having potent inhibitory activity against CRBN (IC50=4.83 µM), and the docking study confirmed a nice fitting of 10a into the active sites of CRBN. Further biology studies revealed compound 10a can increase the apoptotic events, arrest the NCI-H929 cells at G0/G1 cell cycle, and induce the ubiquitination degradation of IKZF1 and IKZF3 proteins by CRL4CRBN. These preliminary results suggested that compound 10a could serve as a potential antitumor drug and worthy of further investigation.  相似文献   

11.
IntroductionSystemic sclerosis (SSc) and primary biliary cirrhosis (PBC) are rare polygenic autoimmune diseases (AIDs) characterized by fibroblast dysfunction. Furthermore, both diseases share some genetic bases with other AIDs, as evidenced by autoimmune gene pleiotropism. The present study was undertaken to investigate whether single-nucleotide polymorphisms (SNPs) identified by a large genome-wide association study (GWAS) in PBC might contribute to SSc susceptibility.MethodsSixteen PBC susceptibility SNPs were genotyped in a total of 1,616 patients with SSc and 3,621 healthy controls from two European populations (France and Italy).ResultsWe observed an association between PLCL2 rs1372072 (odds ratio (OR) = 1.22, 95% confidence interval (CI) 1.12 to 1.33, Padj = 7.22 × 10−5), nuclear factor-kappa-B (NF-κB) rs7665090 (OR = 1.15, 95% CI 1.06 to 1.25, Padj = 0.01), and IRF8 rs11117432 (OR = 0.75, 95% CI 0.67 to 0.86, Padj = 2.49 × 10−4) with SSc susceptibility. Furthermore, phenotype stratification showed an association between rs1372072 and rs11117432 with the limited cutaneous subgroup (lcSSc) (Padj = 4.45 × 10−4 and Padj = 0.001), whereas rs7665090 was associated with the diffuse cutaneous subtype (dcSSc) (Padj = 0.003). Genotype-mRNA expression correlation analysis revealed that the IRF8 protective allele was associated with increased interferon-gamma (IFN-γ) expression (P = 0.03) in patients with SSc but decreased type I IFN (IFIT1) expression in patients and controls (P = 0.02). In addition, we found an epistatic interaction between NF-κB and IRF8 (OR = 0.56, 95% CI 0.00 to 0.74, P = 4 × 10−4) which in turn revealed that the IRF8 protective effect is dependent on the presence of the NF-κB susceptibility allele.ConclusionsAn analysis of pleiotropic genes identified two new susceptibility genes for SSc (NF-κB and PLCL2) and confirmed the IRF8 locus. Furthermore, the IRF8 variant influenced the IFN signature, and we found an interaction between IRF8 and NF-κB gene variants that might play a role in SSc susceptibility.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0572-y) contains supplementary material, which is available to authorized users.  相似文献   

12.
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s−1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9–13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.  相似文献   

13.
The competition for glucose between Escherichia coli ML30, a typical copiotrophic enterobacterium and Chelatobacter heintzii ATCC29600, an environmentally successful strain, was studied in a carbon-limited culture at low dilution rates. First, as a base for modelling, the kinetic parameters μmax and Ks were determined for growth with glucose. For both strains, μmax was determined in batch culture after different precultivation conditions. In the case of C. heintzii, μmax was virtually independent of precultivation conditions. When inoculated into a glucose-excess batch culture medium from a glucose-limited chemostat run at a dilution rate of 0.075 h−1 C. heintzii grew immediately with a μmax of 0.17±0.03 h−1. After five transfers in batch culture, μmax had increased only slightly to 0.18±0.03 h−1. A different pattern was observed in the case of E. coli. Inoculated from a glucose-limited chemostat at D=0.075 h−1 into glucose-excess batch medium E. coli grew only after an acceleration phase of ∼3.5 h with a μmax of 0.52 h−1. After 120 generations and several transfers into fresh medium, μmax had increased to 0.80±0.03 h−1. For long-term adapted chemostat-cultivated cells, a Ks for glucose of 15 μg l−1 for C. heintzii, and of 35 μg l−1 for E. coli, respectively, was determined in 14C-labelled glucose uptake experiments. In competition experiments, the population dynamics of the mixed culture was determined using specific surface antibodies against C. heintzii and a specific 16S rRNA probe for E. coli. C. heintzii outcompeted E. coli in glucose-limited continuous culture at the low dilution rates of 0.05 and 0.075 h−1. Using the determined pure culture parameter values for Ks and μmax, it was only possible to simulate the population dynamics during competition with an extended form of the Monod model, which includes a finite substrate concentration at zero growth rate (smin). The values estimated for smin were dependent on growth rate; at D=0.05 h−1, it was 12.6 and 0 μg l−1 for E. coli and C. heintzii, respectively. To fit the data at D=0.075 h−1, smin for E. coli had to be raised to 34.9 μg l−1 whereas smin for C. heintzii remained zero. The results of the mathematical simulation suggest that it is not so much the higher Ks value, which is responsible for the unsuccessful competition of E. coli at low residual glucose concentration, but rather the existence of a significant smin.  相似文献   

14.

Objective

Tongxinluo (TXL) has been shown to decrease myocardial necrosis after ischemia/reperfusion (I/R) by simulating ischemia preconditioning (IPC). However, the core mechanism of TXL remains unclear. This study was designed to investigate the key targets of TXL against I/R injury (IRI) among the cardiac structure-function network.

Materials and Methods

To evaluate the severity of lethal IRI, a mathematical model was established according to the relationship between myocardial no-reflow size and necrosis size. A total of 168 mini-swine were employed in myocardial I/R experiment. IRI severity among different interventions was compared and IPC and CCB groups were identified as the mildest and severest groups, respectively. Principal component analysis was applied to further determine 9 key targets of IPC in cardioprotection. Then, the key targets of TXL in cardioprotection were confirmed.

Results

Necrosis size and no-reflow size fit well with the Sigmoid Emax model. Necrosis reduction space (NRS) positively correlates with I/R injury severity and necrosis size (R2=0.92, R2=0.57, P<0.01, respectively). Functional and structural indices correlate positively with NRS (R2=0.64, R2=0.62, P<0.01, respectively). TXL recovers SUR2, iNOS activity, eNOS activity, VE-cadherin, β-catenin, γ-catenin and P-selectin with a trend toward the sham group. Moreover, TXL increases PKA activity and eNOS expression with a trend away from the sham group. Among the above nine indices, eNOS activity, eNOS, VE-cadherin, β-catenin and γ-catenin expression were significantly up-regulated by TXL compared with IPC (P>0.05) or CCB (P<0.05) and these five microvascular barrier-related indices may be the key targets of TXL in minimizing IRI.

Conclusions

Our study underlines the lethal IRI as one of the causes of myocardial necrosis. Pretreatment with TXL ameliorates myocardial IRI through promoting cardiac microvascular endothelial barrier function by simulating IPC.  相似文献   

15.

Background

Pulmonary system dysfunction is a hallmark of cystic fibrosis (CF) disease. In addition to impaired cystic fibrosis transmembrane conductance regulator protein, dysfunctional β2-adrenergic receptors (β2AR) contribute to low airway function in CF. Recent observations suggest CF may also be associated with impaired cardiac function that is demonstrated by attenuated cardiac output (Q), stroke volume (SV), and cardiac power (CP) at both rest and during exercise. However, β2AR regulation of cardiac and peripheral vascular tissue, in-vivo, is unknown in CF. We have previously demonstrated that the administration of an inhaled β-agonist increases SV and Q while also decreasing SVR in healthy individuals. Therefore, we aimed to assess cardiac and peripheral hemodynamic responses to the selective β2AR agonist albuterol in individuals with CF.

Methods

18 CF and 30 control (CTL) subjects participated (ages 22 ± 2 versus 27 ± 2 and BSA = 1.7 ± 0.1 versus 1.8 ± 0.0 m2, both p < 0.05). We assessed the following at baseline and at 30- and 60-minutes following nebulized albuterol (2.5mg diluted in 3.0mL of normal saline) inhalation: 12-lead ECG for HR, manual sphygmomanometry for systolic and diastolic blood pressure (SBP and DBP, respectively), acetylene rebreathe for Q and SV. We calculated MAP = DBP + 1/3(SBP–DBP); systemic vascular resistance (SVR) = (MAP/Q)•80; CP = Q•MAP; stroke work (SW) = SV•MAP; reserve (%change baseline to 30- or 60-minutes). Hemodynamics were indexed to BSA (QI, SVI, SWI, CPI, SVRI).

Results

At baseline, CF demonstrated lower SV, SVI, SW, and SWI but higher HR than CTL (p < 0.05); other measures did not differ. At 30-minutes, CF demonstrated higher HR and SVRI, but lower Q, SV, SVI, CP, CPI, SW, and SWI versus CTL (p < 0.05). At 60-minutes, CF demonstrated higher HR, SVR, and SVRI, whereas all cardiac hemodynamics were lower than CTL (p < 0.05). Reserves of CP, SW, and SVR were lower in CF versus CTL at both 30 and 60-minutes (p < 0.05).

Conclusions

Cardiac and peripheral hemodynamic responsiveness to acute β2AR stimulation via albuterol is attenuated in individuals with CF, suggesting β2AR located in cardiac and peripheral vascular tissue may be dysfunctional in this population.  相似文献   

16.
Chronic graft-versus-host disease (cGVHD) is the main cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Mesenchymal stem cells (MSCs) in bone marrow (BM) remain unclear in the pathophysiology of cGVHD. In this study, we analyzed BM-MSCs from 66 patients after allo-HSCT, including 33 with active cGVHD and 33 without cGVHD. BM-MSCs showed similar morphology, frequency, phenotype, and proliferation in patients with or without cGVHD. MSCs from the active cGVHD group showed a decreased apoptosis rate (P < 0.01). Osteogenic capacity was increased while adipogenic capacity was decreased in the active cGVHD MSCs compared with no-cGVHD MSCs. The expressions of osteogenic gene RUNX2 and COL1A1 were higher (P < 0.001) while adipogenic gene PPAR-γ and FABP4 were lower (P < 0.001) in the active cGVHD MSCs than no-cGVHD MSCs. These changes were associated with the severity of cGVHD (P < 0.0001; r = 0.534, r = 0.476, r = −0.796, and r = −0.747, respectively in RUNX2, COL1A1, PPAR-γ, and FABP4). The expression of Wnt/β-catenin pathway ligand Wnt3a was increased in cGVHD-MSCs. The dysfunction of cGVHD-MSCs could be reversed by Dickkopf related protein 1(DKK1) to inhibit the binding of Wnt3a. In summary, the differentiation of BM-MSCs was abnormal in active cGVHD, and its underlying mechanism is the upregulated of Wnt3a through Wnt/β-catenin signaling pathway of MSCs.Subject terms: Cell signalling, Mesenchymal stem cells  相似文献   

17.
18.
To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 μM for eqBChE, 3.62 μM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; –OCH3 > –CH3 > –Cl (–Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aβ1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aβ1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.  相似文献   

19.
While hypothermia (HT) is the standard-of-care for neonates with hypoxic ischemic injury (HII), the mechanisms underlying its neuroprotective effect are poorly understood. We examined ischemic core/penumbra and cytokine/chemokine evolution in a 10-day-old rat pup model of HII. Pups were treated for 24 hr after HII with HT (32℃; n = 18) or normothermia (NT, 35℃; n = 15). Outcomes included magnetic resonance imaging (MRI), neurobehavioral testing, and brain cytokine/chemokine profiling (0, 24, 48, and 72 hr post-HII). Lesion volumes (24 hr) were reduced in HT pups (total 74%, p < .05; penumbra 68%, p < .05; core 85%, p = .19). Lesion volumes rebounded at 72 hr (48 hr post-HT) with no significant differences between NT and HT pups. HT reduced interleukin-1β (IL-1β) at all time points (p < .05); monocyte chemoattractant protein-1 (MCP-1) trended toward being decreased in HT pups (p = .09). The stem cell signaling molecule, stromal cell-derived factor-1 (SDF-1) was not altered by HT. Our data demonstrate that HT reduces total and penumbral lesion volumes (at 24 and 48 hr), potentially by decreasing IL-1β without affecting SDF-1. Disassociation between the increasing trend in HII volumes from 48 to 72 hr post-HII when IL-1β levels remained low suggests that after rewarming, mechanisms unrelated to IL-1β expression are likely to contribute to this delayed increase in injury. Additional studies should be considered to determine what these mechanisms might be and also to explore whether extending the duration or degree of HT might ameliorate this delayed increase in injury.  相似文献   

20.
Fatigue is common in all chronic inflammatory and autoimmune diseases. A conceptual model for understanding the biological basis of fatigue describes it as being a part of the sickness behaviour response generated by pro-inflammatory cytokines and other mediators. We hypothesised that the pro-inflammatory high mobility group box 1 (HMGB1) protein is a fatigue-inducing molecule and that auto-Abs against HMGB1 reduce fatigue. We measured Abs against disulphide (ds) HMGB1 and fully reduced (fr) HMGB1 in plasma from 57 patients with Crohn’s disease. Fatigue was rated using the fatigue visual analogue scale (fVAS) and disease activity with faecal calprotectin, C-reactive protein and the Simple Endoscopic Score for Crohn’s disease. Multivariable regression models identified anti-dsHMGB1 and anti-frHMGB1 Abs as the strongest contributing factors for fVAS scores (B = −29.10 (P = 0.01), R2 = 0.17, and B = −17.77 (P = 0.01), R2 = 0.17, respectively). Results indicate that anti-HMGB1 auto-Abs alleviate fatigue possibly by down-regulating HMGB1-induced sickness behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号