首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There have been two sharp demarcations in my life in science: the transition from fine arts to chemistry, which happened early in my career, and the move from New York to Stanford University, which initiated an ongoing collaboration with the physicist Harley McAdams. Both had a profound effect on the kinds of questions I posed and the means I used to arrive at answers. The outcome of these experiences, together with the extraordinary scientists I came to know along the way, was and is an abiding passion to fully understand a simple cell in all its complexity and beauty.  相似文献   

3.
Just as neural crest cells migrate great distances through the embryo, my journey has taken me from a childhood in a distant land to a career as a biologist. My mentoring relationships have shaped not only the careers of my trainees, but also the trajectory of my own science. One of the most satisfying aspects of mentoring comes from helping to empower the next generation of scientists to do more tomorrow than is possible today. This, together with a passion for discovery and learning new things, motivates me and makes science such a rewarding career.First, let me say how honored I am to receive the Women in Cell Biology Senior Award. I am particularly thankful to my former postdoctoral fellows and students. I have learned as much, or more, from them as they have from me and take great pride and vicarious pleasure from their successes. My goal as a mentor has been to impart an enthusiasm for science and for the satisfaction it can bring at both a professional and personal level. It is the pleasure of discovery and the bonds of collegiality that make being a scientist not only a worthwhile and interesting but also a very fulfilling career.When looking back upon my life as a biologist, many of the “choices” made along my career path were more of a random walk than a premeditated trajectory. Perhaps the most important and constant influences come from my family background, wonderful friends and colleagues, and an inherent interest in the natural world. For me, these were mixed with a good deal of luck and the generous mentorship of valued colleagues.  相似文献   

4.
As one of the twelve Councilors, it is my pleasure to provide a short biographical sketch for the readers of Biophys. Rev. and for the members of the Biophysical Societies. I have been a member of the council in the former election period. Moreover, I served since decades in the German Biophysical Society (DGfB) as board member, secretary, vice president, and president. I hold a diploma degree in chemistry as well as PhD from the University of Göttingen. The experimental work for both qualifications has been performed at the Max Planck Institute for Biophysical Chemistry in Göttingen under the guidance of Erich Sackmann and the late Herman Träuble. When E. Sackmann moved to the University of Ulm, I joined his group as a research assistant performing my independent research on structure and dynamics of biological and artificial membranes and qualified for the “habilitation” thesis in Biophysical Chemistry. I have spent a research year at Stanford University supported by the Deutsche Forschungsgemeinschaft (DFG) and after coming back to Germany, I was appointed as a Heisenberg Fellow by the DFG and became Professor in Biophysical Chemistry in the Chemistry Department of the University of Darmstadt. Since 1990, I spent my career at the Institute for Biochemistry of the University of Muenster as full Professor and Director of the institute. I have trained numerous undergraduate, 150 graduate, and postdoctoral students from chemistry, physics, and also pharmacy as well as biology resulting in more than 350 published papers including reviews and book articles in excellent collaboration with colleagues from different academic disciplines in our university and also internationally, e.g., as a guest professor at the Chemistry Department of the Chinese Academy of Science in Beijing.

  相似文献   

5.
I am so very honored to receive the Women in Cell Biology Sandra K. Masur Senior Leadership Award from the American Society for Cell Biology (ASCB), particularly because many of the previous awardees have served as mentors and sources of inspiration throughout my own career. I also thank the ASCB for always striving to be maximally inclusive, in terms of both the scientists it supports and its broad vision of what constitutes cell biology. As a graduate student I gave one of my first talks at an ASCB meeting, and I am proud to have been an ASCB member for almost 30 years. In this essay, I describe my own career to illustrate the support that I believe is needed to achieve a career in science.

S. L. Wolin  相似文献   

6.
The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy.  相似文献   

7.
Loving science and nature and being a scientist can be very different, yet the two are so intertwined in a scientist''s life that you will certainly experience both aspects. This essay presents my perspective on how, as one who loves science and nature, I came to fall in love with centrosome behavior in stem cells and how I came to run a lab as a scientist. When I started, there was a big gap between my love for science and my experience as a scientist. I filled this gap by learning a “laid-back confidence.”Before the beauty of cell biology (or whatever you love), who you are (i.e., your age, gender, or race) is immaterial. Yet history shows that the ease with which you can pursue science is influenced by who you are. This has certainly been my experience. The key is to find a way to fill in the gap between who you are and what you are (i.e., a scientist), a goal in which we must all support each other. It is my hope that this essay will convey something helpful to those who are at early stages of their career and might be encountering obstacles because of who they are.  相似文献   

8.
Ye Tian investigates how mitochondrial stress signaling pathways regulate longevity using C. elegans as a model system.

An avid reader, Ye Tian used to save up her child allowance with the sole purpose of buying science fiction books. Reading and solving mathematical problems were her favorite hobbies; indeed, she liked mathematics so much that she was about to enroll herself as an architecture major but finally chose biotechnology. Ye moved from her hometown in the Northwest of China, Baoji—famous for housing the Zhou dynasty’s bronzeware and being close to the Terracotta Army—to Beijing for her college and graduate studies.Ye is proud of being among the earliest researchers working on Caenorhabditis elegans in her country; for her PhD studies, she joined the lab of Hong Zhang, who at that time has just established the first C. elegans lab in China at the National Institute of Biological Sciences in Beijing. Ye identified epg-2 as an adaptor for cargo recognition during autophagy. In 2010, she crossed the Pacific toward the U.S. West Coast for her postdoctoral training in the aging field with Andrew Dillin, first at the Salk Institute in San Diego and then at the University of California, Berkeley. There, she discovered that mild mitochondrial stress during development in worms rewires their chromatin landscape to establish specific gene expression patterns throughout the lifespan and promote longevity.Ye Tian. Photo courtesy of Ye Tian.Ye came back to China at the end of 2016 to start her own lab at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences. Her research team studies mitochondrial stress signaling pathways and their interplay with aging. We chatted with her to learn more about her next scientific plans.What interested you about the interplay between mitochondria and aging?I became interested in mitochondrial biology during my postdoc in Andrew Dillin’s lab. Since the origin of eukaryotic cells, mitochondria have been a driving force of evolution. During reproduction, mitochondria are passed from the mother to the offspring through egg cells and they exhibit a unique inheritance pattern. As essential hubs that dictate cellular metabolism, it is clear now that mitochondria and the nucleus maintain a bidirectional communication. Early life “stressed” mitochondria communicate with the nucleus to induce gene expression changes that are beneficial on longevity and persist throughout the lifespan. The fact that mitochondrial function is crucial to aging fascinated me; I wanted to continue exploring that topic further, and that’s why I established my lab around the question of how mitochondrial surveillance mechanisms regulate the aging process.What are you currently working on? What is up next for you?My research team focuses on the interplay between mitochondrial stress signaling pathways and aging. The first work that my lab published was a project that I started during my postdoc. The Dillin lab reported a phenomenon in which perturbations of mitochondria in neurons induced a mitochondrial stress response in the peripheral tissues and hypothesized that a secreted signal molecule, named after mitokine, is required for the cell non-autonomous regulation (1). The identity of this molecular signal remained elusive for almost ten years until we found that a secreted Wnt ligand, EGL-20, functions as the mitokine to coordinate mitochondrial stress signaling across tissues and promote longevity of the organism (2). We are also interested in how the crosstalk between mitochondria and the nucleus influences lifespan. We found that mitochondrial perturbations alter the nuclear epigenome to induce longevity via the histone deacetylation complex NuRD in response to cellular acetyl-CoA levels, the key metabolite at the entry point of the Krebs cycle (3).Lab group picture; current lab members (2021). Photo courtesy of Ye Tian.Our latest work stemmed from a serendipitous observation that neuronal mitochondrial stress is sensed by and transmitted through the mitochondria in the germline. Intergenerational, maternal inheritance of elevated levels of mitochondrial DNA via the mitokine Wnt/EGL-20, which causes the activation of the mitochondrial unfolded protein response (UPRmt), provides descendants with a greater tolerance to environmental stress. This makes the offspring live longer (4).Among our short-term scientific plans, we’re determining how mitochondria functions during the aging process at both the genetic and biochemical levels and searching for ways to apply our findings from C. elegans to neurodegenerative disease models in mammals.What kind of approach do you bring to your work?The curiosity about how things work drives me; what I enjoy the most is when I see things happening in front of my eyes and when I figure out why they occur that way. That enthusiasm is what I try to spread to my team every day. In the lab, we rely on C. elegans as our model system and on genetics to dissect complex biological processes like aging. We have also adapted modern biochemical and imaging techniques as well as bioinformatics to complement our genetic studies. I’m a geneticist at heart, and I like to initiate a project with a well-designed genetic screen. The best part is that the screen often leads me to answers I was not expecting, and that’s genuinely inspiring!What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?Like most scientists, my research career has gone through ups and downs. I had to change my research project in the last year of my graduate school; that was nerve-racking, but I eventually managed to redirect my thesis and get exciting results under time pressure, thanks in large to the support of my parents, mentors, and lab mates. That helped me prepare to become a principal investigator; I gained confidence in problem solving, and since I’ve experienced the stress of dealing with last-minute scope changes firsthand, I connect better with my students.I guess, as many other non-native English speakers, I wasn’t prepared for writing grants and papers fluently in English. This issue wasn’t obvious during my graduate and postdoctoral studies, as my mentors were always there for me and proofread and edited my writing. Now I have to stand up for myself. I spend most of my time writing; I’ve improved my writing skills but it’s still an ongoing process.Reconstruction of the nerve system of C. elegans by confocal microscopy. Green corresponds to YFP-labeled neuronal specific marker Q40, and red labels germline specific mitochondrial outer membrane protein TOMM-20::mkate2. Image courtesy of Ye Tian’s lab.What has been the biggest accomplishment in your career so far?My very first PhD student, Qian Zhang, graduated with two first-author papers and decided to pursue a research career in academia. Being responsible for someone else’s career is challenging but also rewarding.What has been the biggest challenge in your career so far?I use the model organism C. elegans for my research in aging, so from time to time, peers criticize the relevance of my work to human health. I’m used to justifying my scientific approach to funding agencies and peers in other fields, but sometimes it’s exhausting or not pleasant.Who were your key influences early in your career?My PhD mentor, Hong Zhang. He is very passionate about the science he does, and he is courageous to shift his research directions to answer new biological questions.What is the best advice you have been given?I think the best advice I’ve gotten is that “tomorrow is another day.” It reminds me to keep going and be optimistic.What hobbies do you have?I love art and music. When I was in San Diego, I used to play in the Chinese Music Band; I miss my musician friends over there. In my teens, I used to hike mountainside trails along the river with my parents. Now, running has become my new favorite hobby. I enjoy the tranquility and peace of mind while running; it’s soothing.  相似文献   

9.
It is a great privilege to contribute to the Reflections essays. In my particular case, this essay has allowed me to weave some of my major scientific contributions into a tapestry held together by what I have learned from three colleagues (Robert Letsinger, Gobind Khorana, and George Rathmann) who molded my career at every important junction. To these individuals, I remain eternally grateful, as they always led by example and showed many of us how to break new ground in both science and biotechnology. Relative to my scientific career, I have focused primarily on two related areas. The first is methodologies we developed for chemically synthesizing DNA and RNA. Synthetic DNA and RNA continue to be an essential research tool for biologists, biochemists, and molecular biologists. The second is developing new approaches for solving important biological problems using synthetic DNA, RNA, and their analogs.  相似文献   

10.
This talk was delivered as an Inaugural Lecture in Anthropology at the University of Sydney on the evening of August 22, 2001. It was sponsored by the Arts Association of the University of Sydney. In it I present an overview of my career, noting the consistencies between my work in philosophy and in anthropology, and between what may appear as two quite disparate field sites, urban Jamaica and central Australia. A method that involves a sociology of value, and an historical anthropology, brings these research areas into interesting relations, as does a growing concern with women's roles in the course of change.  相似文献   

11.
After 58 years in science, mostly in pharmacology, one gains perspective. Mine is that there have been important changes over this time, some good and some questionable. In this commentary, I try to reveal how I got to this stage, partially explaining my biases, and possibly helping others learn from my experiences including mistakes. Changing from seeking an M.D. to cellular biology and then to pharmacology early in my career were the best moves I made. The next best move was migration to Canada, away from the McCarthy-McCarran hysteria. Arriving at a time after the end of World War II when science in Canada was expanding was very good luck. I had an excellent opportunity to enjoy both the administration (as Chair of the first independent Department of Pharmacology at the University of Alberta) and the practice of pharmacology (as a practitioner of research on smooth muscle in health and disease). For me, the practice of research has always won over administration when a choice had to be made. Early on, I began to ask questions about educational practices and tried to evaluate them. This led me to initiate changes in laboratories and to seek nondidactic educational approaches such as problem-based learning. I also developed questions about the practice of anonymous peer review. After moving to McMaster in 1975, I was compelled to find a solution for a failed "Pharmacology Program" and eventually developed the first "Smooth Muscle Research Program". Although that was a good solution for the research component, it did not solve the educational needs. This led to the development of "therapeutic problems", which were used to help McMaster medical students educate themselves about applied pharmacology. Now these problems are being used to educate pharmacology honours and graduate students at the University of Alberta. The best part of all these activities is the colleagues and friends that I have interacted with and learned from over the years, and the realization that many of them have collaborated with me again in this volume.  相似文献   

12.
I became interested in biology as an undergraduate in a premedical curriculum but developed a passion for the field of reproductive biology because of a course in physiology of reproduction taken to meet requirements for admission to veterinary school. My career path changed, and I entered graduate school, obtained the Ph.D., and have enjoyed an academic career as a reproductive biologist conducting research in uterine biology and pregnancy in animal science departments at the University of Florida and at Texas A&M University. However, I have never allowed academic boundaries to interfere with research and graduate education as that is contrary to collegiality, the cornerstone of great universities. I consider that my major contributions to science include 1) identification of proteins secreted by cells of the uterine endometrium that are critical to successful establishment and maintenance of pregnancy; 2) discovery of steroids and proteins required for pregnancy recognition signaling and their mechanisms of action in pigs and ruminant species; 3) investigation of fetal-placental development and placental transport of nutrients, including water and electrolytes; 4) identification of linkages between nutrition and fetal-placental development; 5) defining aspects of the endocrinology of pregnancy; and 6) contributing to efforts to exploit the therapeutic value of interferon tau, particularly for treatment of autoimmune diseases. My current studies are focused on the role of select nutrients in the uterine lumen, specifically amino acids and glucose, that affect development and survival of the conceptus and translation of mRNAs and, with colleagues at Seoul National University, gene expression by the avian reproductive tract at key periods postovulation. Another goal is to understand stromal-epithelial cell signaling, whereby progesterone and estrogen act via uterine stromal cells that express receptors for sex steroids to stimulate secretion of growth factors (e.g., fibroblast growth factors and hepatocyte growth factor) that, in turn, regulate functions of uterine epithelial cells and conceptus trophectoderm.  相似文献   

13.
To be the recipient of the E. E. Just Award for 2014 is one of my greatest honors, as this is a truly rarefied group. In this essay, I try to trace my path to becoming a scientist to illustrate that multiple paths can lead to science. I also highlight that I did not build my career alone. Rather, I had help from many and have tried to pay it forward. Finally, as the country marches toward a minority majority, I echo the comments of previous E. E. Just Award recipients on the state of underrepresented minorities in science.  相似文献   

14.
This paper is based on my lecture in a macroevolution course I team-teach with Profs. Daniel Brooks and David Evans at the University of Toronto. The lecture has undergone many revisions over the years as I grappled with problems discussing certain areas (e.g., rape as an adaptive strategy, gender “roles”). Eventually, I realized that the problem areas said more about my personal conflicts than they did about the science. This was one of those epiphany moments, a time when I recognized that I was less likely to accept hypotheses that contradicted the way I wanted the world to be and more likely to uncritically accept hypotheses that confirmed my world view. That epiphany, in turn, led me to realize that science is never separate from the personal biases/demons of its practitioners, especially when we are asking questions about the evolution of human behavior. That realization was not novel within the vast literature of sociology and philosophy. But it was novel for me. I was aware of discussions about personal biases clouding scientific interpretation; I just didn’t think it applied to me (I absorbed the philosophical discussions without making the connection to “my world”). So, on the heels of that epiphany, the following is a very personal take on the question of teaching sociobiology, based on where my journey, aided by my experience as an ethologist and phylogeneticist and colored by my own history, has taken me.  相似文献   

15.
THE Genetics Society of America’s Thomas Hunt Morgan Medal is awarded to an individual GSA member for lifetime achievement in the field of genetics. The 2014 recipient is Frederick Ausubel, whose 40-year career has centered on host–microbe interactions and host innate immunity. He is widely recognized as a key scientist responsible for establishing the modern postrecombinant DNA field of host–microbe interactions using simple nonvertebrate hosts. He has used genetic approaches to conduct pioneering work that spawned six related areas of research: the evolution and regulation of Rhizobium genes involved in symbiotic nitrogen fixation; the regulation of Rhizobium genes by two-component regulatory systems involving histidine kinases; the establishment of Arabidopsis thaliana as a worldwide model system; the identification of a large family of plant disease resistance genes; the identification of so-called multi-host bacterial pathogens; and the demonstration that Caenorhabditis elegans has an evolutionarily conserved innate immune system that shares features of both plant and mammalian immunity.Open in a separate windowFrederick M. AusubelI was born on VJ day, September 2, 1945, the official end of World War II and the first day of the baby boomer generation. It was an auspicious time for a future scientist to be born. I entered the job market in 1975 when interest in and funding of science was expanding and when academic jobs were relatively plentiful.The path I have taken from being a college chemistry major to a molecular biologist and geneticist has had many twists and turns. Chance encounters and unplanned events played an important role in shaping my career. The political and social upheavals of the 1960s also greatly influenced my career choices, as did a psychological restlessness that made it difficult for me to focus for any extended period on a particular project or goal. Although I would not necessarily recommend that anyone follow my career path, I suspect it would be a much more treacherous journey today than it was 50 years ago, reflecting what appears to me to be a degradation in the ethos of the scientific community.  相似文献   

16.
This account is focused upon the early part of my career in order to illuminate the logistics and the culture of our science in the period 1936 to 1949. A roundabout path took me from a farm in Pennsylvania to a PhD under George Burr at Minnesota in 1939. In studying the photosynthetic competence of chlorophyll formed by the green alga Chlorella in darkness, I stumbled upon the phenomenon of photoinhibition. In a two-year postdoctorate at the Smithsonian Institution, I worked under E.D. McAlister. Our major accomplishment was in making simultaneous recordings of fluorescence and CO2 uptake during the induction period. Variations in photosynthetic behavior of Chlorella led to a study of culture conditions and a recognition of the changing conditions which occur in batch cultures. A continuous culture apparatus (turbidostat) was developed as a means of attaining steady-state growth and production of uniform experimental material. I exploited the device in work at my first (and only) position at The University of Texas in 1941 and subsequent years. Study of the CO2/O2 gas exchange ratio led to the recognition of the important role of nitrate in the photosynthetic metabolism of algae. The account ends with the 1949 American Association for the Advancement of Science symposium.Invited and edited by Govindjee  相似文献   

17.
As STEM (Science, Technology, Engineering, and Math) professionals, we are tasked with increasing our understanding of the universe and generating discoveries that advance our society. An essential aspect is the training of the next generation of scientists, including concerted efforts to increase diversity within the scientific field. Despite these efforts, there remains disproportional underrepresentation of Black scientists in STEM. Further, efforts to recruit and hire Black faculty and researchers have been largely unsuccessful, in part due to a lack of minority candidates. Several factors contribute to this including access to opportunities, negative training experiences, lack of effective mentoring, and other more lucrative career options. This is a narrative of a Black male scientist to illustrate some of the issues in retaining Black students in STEM and to highlight the impact of toxic training environments that exists at many institutions. To increase Black participation in STEM careers, we must first acknowledge, then address, the problems that exist within our STEM training environments in hopes to inspire and retain Black students at every level of training.

I write this today as the curtain of systemic racism and oppression has lifted on our nation. I write this today knowing that difficult conversations about race are happening all across America. As a result of tremendous sacrifices and lives lost, there have been demonstrations and rallies internationally demanding change, prompting governments, organizations, and companies to issue statements claiming that Black Lives Matter (Asmelash, 2020). While the rage has sparked the demand for equity in our society, what does this mean for science?My heart is heavy with these discussions as I have reflected on my own journey in science and revisit the toxic environment that often makes up our science culture. The journey has been long and brutal. It has taken me from first realizing that I wanted to become a scientist, to having this dream deferred by racism, to adopting a persona of persistence and resilience, and finally becoming a professor and cell biologist. This trek through science is one that is not traversed by many Black people (Graf et al., 2018).When confronted by the pervasiveness of racism in science, I remember surviving the assault by learning about the resilience story of Carl Brashear (Robbins, 2000). In 1970, Master Chief Petty Officer Brashear became the first African American master diver in the Navy, and he showed unwavering strength and persistence in the face of racism. Brashear faced an onslaught of racism during his training that endangered his life countless times, but he persisted and eventually won the admiration of his fellow divers. Upon reflection, his story has many signs of an abusive hazing relationship. However, at the time, I thought emulating his behaviors of persistence was the answer to success in science. I thought, “All you have to do is not give up.” I focused on what I thought I could control and kept the Japanese proverb, “Fall down seven, stand up eight” above my bench. I worked long hours, made many mistakes, but always got right back up to the bench to try again. I never saw myself as the brightest or smartest, but I would tell myself “I will be the one who does not give up.” When I recall these stories and talk to students about my journey, I would always say I wanted to be like the cockroach. Because, as is commonly known, you can never get rid of the cockroach. What I never realized with this persistence or “grit” mentality was that it never addressed the problems of systemic racism within the culture of science (Das, 2020). This message of persistence is akin to blaming the victim and not dealing with the root problems in science, including the lack of mentoring, implicit bias, and hostile teaching and training environments (Barber et al., 2020; Team, 2020).In her book, We Want to Do More Than Survive, Bettina Love talks about the idea of teaching persistence or “grit” to African American students as the educational equivalent to the Hunger Games, a fictional competition where participants battle to the death until there is only one victor (Love, 2019). Instead of addressing institutional barriers to success for African Americans in science (i.e., dismantling the Hunger Games arena), we prepare them to survive in a toxic environment. We tell African American students at a young age that the system is structured against them and that they have to be twice as good and work twice as hard as white students (Thomas and Wetlaufer, 1997; Cavounidis and Lang, 2015; Danielle, 2015). We heap a tremendous amount of pressure and responsibility on their shoulders without ever addressing the question, why is it like this? We are in effect training them for the Hunger Games. As they enter college as science majors, they are pitted against each other, and the few victors move into science careers.This Hunger Games analogy (Love, 2019) is reflective of my thinking early on in my science career. As a freshman marine biology major, I imagined myself, like Brashear, a soldier during basic training. I was a member of the “people of color” (POC) squad that was given the least amount of resources and the most dangerous duties. As part of the POC squad, we moved forward through our college years. I saw many fellow soldiers drop from science, and there were only a handful of us left when I reached my junior year (Koenig, 2009).Recently, Michael Eisen, Editor-in-Chief of eLife, authored an opinion article entitled “Racism in Science: We need to act now” (Eisen, 2020). In this article, he reflected on the current racial climate in science and examined his role as both a principle investigator (PI) of a research laboratory and an editor of a prestigious journal. Of note, he highlighted the dire lack of African Americans he had worked with over his career, including the number of researchers he trained in his laboratory, senior editors, and even reviewers for the articles sent for publication to eLife. I appreciated his honesty in shedding light on the issue that so many people whisper about in department hallways or during coffee breaks at national conferences. Based on my journey, I truly understand this lack of diversity, as so few of us are victors in the scientific Hunger Games.As we struggle as a nation with the role of policing within our society, I find similarities between aggressive policing in the Black community and training of Black and Brown students (North, 2020). There are strong implicit biases that we hold within our training environment, and Black students usually find themselves very quickly judged (or prejudged) for a perceived lack of commitment, motivation, or focus (Park et al., 2020). They are also stereotyped as lacking in quantitative abilities (especially the ability to do math) (McClain, 2014). Taken together, these biased judgements result in a lack of trust regarding their data (Steele, 1997). In other words, research supervisors may implicitly expect Black students to be untrustworthy. This is extremely problematic because educational research shows that one of the greatest determinants of students’ success is their teachers’ expectations (Boser et al., 2014). Consequently, it is predictable that if research supervisors expect Black students to be untrustworthy, they will fail.As PIs, we must trust our research students because they are extensions of ourselves in the laboratory. Due to our inability to spend significant amounts of time at the bench, we must trust our students to figure it out and get the work done. Inevitably, experimental approaches will fail; however, based on my experiences in science, Black students are often not given the benefit of the doubt. Instead, I have seen mis/distrust of their commitment, values, and abilities that creates the narrative that they are not motivated, do not care about science, and/or are unable to get the work done, resulting in a broken trainer/trainee relationship. I have witnessed too many Black students fall victim to a “one strike” policy. This was true of me in my early training in marine biology, where I was asked to leave after only 6 months of working in a laboratory. The professor suggested that I had a lack of commitment to my project and was told by other lab members that they collected “my” data, thus providing justification to ask me not to continue. However, what the professor did not know (or care to ask about) was that the other lab members deemed me as someone who did not belong. Consequently, without my knowledge, they collected data on my project and sent it to the PI, thereby working to reinforce the narrative of my lack of commitment. This experience significantly hindered my access to research opportunities and blacklisted me from any other marine biology labs at my university because I was labeled as uncommitted to science. This ended my career in marine biology. I lost the Hunger Games.As a graduate student, I found another opportunity in a cell biology laboratory, and I tried to apply lessons learned from my earlier participation in the Games. I overcommitted to lab work, blocking out any activities related to my culture or personal life. Instead, I dedicated myself completely to the lab. Working 12-h days, I found that my research was progressing, but I was burning out and losing any desire toward a research career. In particular, my burnout was connected to the perception that any interest in my culture and community would not be allowed or accepted or would signal a lack of adequate commitment to science. In effect, I was learning that being a scientist meant that I could not be Black. This, coupled with the constant microaggressions that I faced from professors in classes, among my graduate cohort, and my laboratory colleagues, broadcasted the message that I was an intruder in science. Luckily, I received good mentoring and advice on how to succeed in my graduate program, learning that it was not a sprint, but a marathon. I learned how to balance my personal and professional life, and I always kept them separate. Additionally, the mental image of the resilient cockroach helped me repeatedly during my graduate training, from failing my qualifying exams and failed experiments at the bench to rejections of papers and fellowship applications. While all scientists know that being a scientist means accepting significant amounts of failure, I could not help but feel that the failures I experienced were more frequent, more recognized by others, and even expected by some. This culture of expected failure for people of color (i.e., presumed incompetence), combined with implicit biases and microaggressions, can establish significant barriers for entering and staying in STEM training environments (Smith et al., 2007).To overcome barriers to success in STEM, I worked hard to become a professor in cell biology. I believed that as a professor, I could make a difference, change the environment, and contribute to the change that is so desperately needed. However, I have discovered that the current science culture is just as toxic as when I was a student. Yes, there are programs targeting the inclusion of historically underrepresented groups. There are also a growing number of institutions that are adopting inclusive teaching strategies. Further, we are seeing hiring committees require diversity statements from their applicants as well as receiving implicit bias trainings (Wood, 2019). However, there remains nearly a complete lack of Black faculty members at universities and colleges (Jayakumar et al., 2009; Garrison, 2013; Li and Koedel, 2017). This is, in part, because we have not changed the systemic racism that exists within our training environments. In fact, this racism comes from our noninclusive faculty bodies (Hardy, 2020). In essence, we have nearly a complete absence of Black faculty in STEM because so few Black trainees survive the Hunger Games. More troubling, if they survive, they may be found otherwise unacceptable.Changing the system starts with the belief that Black students can be scientists, followed by acting to proactively encourage and support Black students in STEM. As Eisen states, “This is a solvable problem, we have chosen not to solve it” (Eisen, 2020). Recruiting Black students and scientists at every level is a good start, but without changing the scientific environment to be more welcoming and affirming, those recruited to science will continue to be traumatized. In other words, while increasing access to science is required, it is not sufficient. The dominant majority in science also needs to identify and address their own biases to create antiracist environments. This will only happen when scientists from all groups recognize our convergent interests to advance our universal missions, which is to increase our understanding of the world around us and to solve research questions that will benefit our communities. This is best achieved by a diverse and inclusive scientific workforce for greater knowledge, discovery, and innovation.  相似文献   

18.
As one of the twelve Councilors of the International Union of Pure and Applied Biophysics elected in summer 2021, I have been asked to provide this short biographical sketch for the journal readers. I am a new member of the IUPAB Council. I hold a specialist degree in Applied Physics and Mathematics from the Moscow Institute of Physics and Technology and PhD in Biophysics from Moscow State University. I have spent my entire professional career at Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences in Moscow, where I am currently a senior researcher. I am Associate Professor at the Digital Health Institute of the I.M. Sechenov First Moscow State Medical University since 2018, and have trained undergraduate students in structural biology, biophysics, and bioinformatics. In addition, I serve as the Guest Editor of special journal issues of International Journal of Molecular Sciences and Frontiers in Genetics BMC genomics. Now I joined Biophysical Reviews Editorial Board as IUPAB Councilor. I am a Secretary of National Committee of Russian Biophysicists, and have helped to organize scientific conferences and workshops, such as the VI Congress of Russian Biophysicists.

  相似文献   

19.
Gaia Pigino studies the molecular mechanisms and principles of self-organization in cilia using 3D cryo-EM.

Gaia Pigino was only 3 yr old when she became fascinated with nature in the beautiful countryside of Siena, Italy, where she grew up. The neighbor’s daughter showed her a hen in the chicken coop, and they caught it in the act of laying an egg. Gaia remembers, “This was for me almost a shock, as my experience about eggs was that they come directly out of paper boxes!” Her father was also an important part of awakening Gaia’s curiosity for the amazing things in nature. He used to bring home the award-winning magazine Airone, the Italian equivalent of National Geographic. Gaia never missed an issue; even before learning to read, she could spend hours looking at the captivating photos of the wildlife. She wanted to understand what she was seeing, and maybe because of that, she was determined to do science.Gaia Pigino. Photo courtesy of Human Technopole.Gaia took her first “scientific” steps with Professor Fabio Bernini and Professor Claudio Leonzio at the University of Siena, where she studied bioindicators of soil contamination and detoxification strategies of soil arthropods as part of her PhD project. But it was later, when she joined the laboratory of Professor Pietro Lupetti and met Professor Joel Rosenbaum, a pioneer of cilia research, that Gaia discovered the world of 3D EM and felt her place was “inside a single cell.” She solidified her interest in the structure of protein complexes of cilia and flagella and boosted her passion for cryo-electron tomography (ET) in the laboratory of Professor Takashi Ishikawa, first at the ETH Zurich and then at the Paul Scherrer Institut in Switzerland. In 2012, Gaia started her own laboratory at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, with the vision of creating a truly interdisciplinary laboratory. Her team combines techniques from different fields such as biophysics, cell biology, and structural biology to answer open questions in the cilia field. Gaia recently moved countries again—this time to take over the position of Associate Head of the Structural Biology Research Centre, at the Human Technopole, Milan, Italy.We reached out to Gaia to learn more about her scientific journey and future research directions.What interested you about cilia?The first thing that attracted me toward cilia and flagella were some EM micrographs, by Professor Romano Dallai in Siena, that showed the beautiful geometrical microtubular structures of sperm flagella. I was intrigued by the apparent perfection of these organelles that clearly showed me that a cell is a coordinated system of complex molecular machines, the mechanism of many of which we do not understand. Soon after, Professor Joel Rosenbaum introduced me to the bidirectional transport of components inside cilia, which, he explained to me, is required for both assembly and function of virtually all cilia and flagella, from the motile cilia in our lungs to the primary cilium in our kidneys. He called it intraflagellar transport (IFT) and compared it to a Paternoster elevator, where the individual cabins were what we now call IFT trains. I was completely fascinated by the IFT system, the structure, the function, the dynamics, and the mechanism of which were still largely unknown. Quickly, I realized that in addition to IFT, cilia represent a virtually infinite source of open biological questions waiting to be solved, from the mechanics and regulation of the beating to the sensory function of primary cilia, and their importance for human health.What are some of the scientific questions currently of interest in your laboratory?In the past few years, we have made substantial contributions to the current understanding of the structure and the mechanism of the IFT (1, 2, 3). Currently, we are investigating how the structure of IFT trains relates to their functions by looking, in cryo-electron tomography, at how anterograde trains transform into retrograde trains and at how different ciliary cargoes are loaded on the trains. Beside this more classical line of research, we are exploring other approaches to study IFT, for instance we have developed a method to reactivate IFT trains in vitro on reconstituted microtubules. We want to use this approach to investigate the behavior of IFT trains, and their motors, in experimentally controllable conditions, e.g., in the presence of only certain tubulin posttranslational modifications. We have also made interesting discoveries about the distribution of tubulin posttranslational modifications on the microtubule doublets of the axoneme and how this spatially defined tubulin code affects the function of different ciliary components. We hope we will be able to share these new “stories” with the structural and cell biology community very soon!What kind of approach do you bring to your work?I believe that the main reason for why science became an integral, and dominant, part of my life is because it provides infinite riddles and continuous challenges. I have always been curious about how things work in nature, but I quickly realized that learning from books didn’t satisfy me. My desire was to be at the frontline, to be among the ones that see things happening in front of their eyes, at the microscope, for the first time. I wanted to be among the ones that make the discoveries that students read about in textbooks. Thus, what I bring to my work is an endless desire of solving biological riddles, curiosity, creativity, determination, and energy, with which I hope to inspire the members of my team. My laboratory uses an interdisciplinary approach; we use whatever method, technique or technology is needed to reach our goal, from the most basic tool to the most sophisticated cryo-electron microscope. And if the method we need does not yet exist, we try to invent it.A young Gaia Pigino (3 yr old) the day she discovered how eggs are made. Photo courtesy of Giancarlo Pigino.Could you tell us a bit about the Structural Biology Research Centre at the Human Technopole (HT)?At the HT Structural Biology Centre, we are working to create a vibrant and interdisciplinary scientific environment that will attract molecular, structural, cell, and computational biologists from all over the world. We are creating fantastic facilities, including one of the most well equipped and advanced electron microscopy facilities in Europe—and likely the world—headed by Paolo Swuec. My team, together with the teams of my colleague Alessandro Vannini and the research group leaders Ana Casañal, Francesca Coscia, and Philipp Erdmann, already cover a vast range of competences and know-how from classical molecular and structural biology approaches, such as crystallography and protein biophysics, to cryo-CLEM, cryo-FIB SEM and cryo-ET, all of which allow us to address questions in cell biology. Our goal is to create a scientific infrastructure and culture that will enable biologists to obtain a continuum of structural and functional information across scales.What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?I learned that everyday research is mostly made of failures, but that with the right amount of obsession, persistence, curiosity, and creativity, it is always possible to succeed and discover new things. Being given the freedom to develop your own ideas and your own project very early in your career is a treat; science is not only about having good ideas! One needs to follow up on these ideas with intense work and troubleshooting to make them reality. In addition, I realized that being fearless and attempting what is considered too difficult by others, despite challenges, can turn into a worthy learning experience. Also, how you present your work to the scientific community matters for swinging the odds of success in your favor. Different places might work in very different ways, and conducting good science does not only depend on you, but also on the possibilities given to you by your environment.What was I unprepared for?—I guess several things, but one comes immediately to mind: I underestimated how much being responsible not only for my own life and career, but also the career of students, postdocs, and others in the laboratory, would affect me personally.Structure of the 96-nm axonemal repeat reconstructed by cryo-ET and subtomogram averaging. Image courtesy of Gonzalo Alvarez Viar, Pigino Lab.What has been the biggest accomplishment in your career so far?This is a tricky question for me... I tend to look into the future more than celebrating the past. I fight to succeed in something, but as soon as I conquer it, I find it less of an achievement than the thing I could conquer next. Nevertheless, I am happy about the discoveries and the papers published together with my students and postdocs (1, 2, 3, 4, 5). I am extremely excited about the fact that after many years of work I am now leading an interdisciplinary laboratory, where we combine techniques from different fields. I am also happy that three times my husband and I were able to move from one world class academic institution to the another to start exciting and fitting jobs and could still live together in the same place. We worked hard for this, but we also got lucky.What has been the biggest challenge in your career so far?I studied French in school; I had almost no exposure to spoken English until the end of my PhD. To avoid having to show my English insufficiencies, I did hide beside the board of my poster at the first international conference I attended in 2004! It took me a while to overcome this barrier and feel confident to express my thoughts and ideas in English.What do you think you would be if you were not a scientist?I had been a good fencer during my youth. I was a member of the Italian National Team between ages 14 and 19 and saw quite a bit of the world, which was cool! When my sporting career failed, due to diabetes, I was torn between art and science. I guess that in a parallel universe, I am a wildlife photographer and a potter specialized in wood kiln firing. [Gaia confesses that she misses “the amazing and addictive adrenaline rush of a good fencing match!”]Any tips for a successful research career?Do not compare your performances to the ones of the people at your career stage; compare yourself with people that are already successful one level higher than you currently are at. For example, if you are a PhD student, ask yourself what in your current performance separates you from being a good postdoc—once a postdoc, what is missing to be a good PI.  相似文献   

20.
This article reviews a lecture I was honored to present at the Leon Wolfe Symposium in Montreal on March 25, 2004. The lecture described my research career, which started with my interaction with Wolfe at the Montreal Neurological Institute as a postdoctoral fellow and research associate and was followed by additional research discoveries after I left Montreal for my first academic position at the Research Institute, The Hospital for Sick Children and University of Toronto. The article consists of two parts. The first part involves the discovery (in Wolfe’s laboratory) of a new pathway of arachidonic acid, in which a bicyclic prostanoid structure (later called prostacyclin by John Vane and his group) was described, and its further development in Toronto, which led to the discovery of the conversion of the bicyclic prostanoid into 6-keto prostaglandin F. The second part deals with the hepoxilin pathway, a pathway I discovered during a sabbatical leave in Japan with Professor Shozo Yamamoto, which was followed by a stay of several months in the laboratory of Professor Bengt Samuelsson in Sweden. I deal with the historical aspects of both pathways and end with interesting novel aspects of hepoxilin stable antagonist analogs in the treatment of solid tumors in experimental animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号