首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Males, especially in species where they provide little or no parental investment, usually have high potential reproductive rates and are expected to maximize their fitness by mating with several females. This view is challenged, however, by species in which males provide no parental investment, but nevertheless mate with one female only. Male monogamy (monogyny), associated with an extreme investment in paternity protection, appears to be comparatively common in web‐building spiders, and has recently been subject to experimental and theoretical studies. To date, however, studies approaching this issue from an ecological perspective are rare. Theory predicts that the evolution of a monogynous mating strategy is favoured by a male‐biased sex ratio, but not necessarily by a high mortality risk for mate‐searching males. To test these predictions, we conducted a field study on the golden orb spider Nephila fenestrata, which has a mating system with potentially cannibalistic, polyandrous females, and males that are often functionally sterile after mating with one female only. Based on daily observations of marked individuals, we confirm that, consistent with laboratory findings, monogyny is common in N. fenestrata. Nevertheless, observations of male movements between females raise the possibility that a proportion of males may mate with two females. We show that the sex ratio in our study population is male‐biased, and that males incur only a relatively moderate mortality risk during mate‐search. These findings provide insights into the ecological basis for the evolutionary maintenance of monogyny.  相似文献   

2.
Perceptual biases explain the origin and evolution of female preference in many species. Some responses that mediate mate choice, however, may have never been used in nonmating contexts. In the fiddler crab, Uca mjoebergi, mate‐searching females prefer faster wave rates and leading wave; however, it remains unclear whether such responses evolved in a mating context (i.e., the preference has effect on the fitness of the female and her offspring that arise from mating with a particular male) or a nonmating contexts (i.e., a female obtains direct benefits through selecting the male with a more detectable trait). Here, we compared the preferences of mate‐searching with those of ovigerous females that are searching for a burrow and do not concern about male “quality.” Results showed that as both mate‐searching and ovigerous females preferentially approached robotic males with faster wave rates. This suggests that wave rate increases detectability/locatability of males, but the mating preference for this trait is unlikely to evolve in the mating context (although it may currently function in mate choice), as it does not provide fitness‐related benefit to females or her offspring. Wave leadership, in contract, was attractive to mate‐searching females, but not ovigerous females, suggesting that female preference for leadership evolves because wave leadership conveys information about male quality. We provide not only an empirical evidence of sensory biases (in terms of the preference for faster wave), but the first experimental evidence that mating context can be the only selection force that mediates the evolution of male sexual traits and female preference (in terms of the preference for leading wave).  相似文献   

3.
4.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

5.
Sexual selection, mating opportunities, and parental behavior are interrelated, although the specific nature of these relationships is controversial. Two major hypotheses have been suggested. The parental investment hypothesis states that the relative parental investment of the sexes drives the operation of sexual selection. Thus, the sex that invests less in offspring care competes more intensely and monopolizes access to mates. The sexual conflict hypothesis proposes that sexual selection (the competition among both males and females for mates), mating opportunities, and parental behavior are interrelated and predicts a feedback loop between mating systems and parental care. Here we test both hypotheses using a comprehensive dataset of shorebirds, a maximum-likelihood statistical technique, and a recent supertree of extant shorebirds and allies. Shorebirds are an excellent group for these analyses because they display unique variation in parental care and social mating system. First, we show that chick development constrains the evolution of both parental care and mate competition, because transitions toward more precocial offspring preceded transitions toward reduced parental care and social polygamy. Second, changes in care and mating systems respond to one another, most likely because both influenced and are influenced by mating opportunities. Taken together, our results are more consistent with the sexual conflict hypothesis than the parental investment hypothesis.  相似文献   

6.
We reexamine the influential parental investment hypothesis proposed by Trivers for the causal relationship between anisogamy and widespread female-biased parental care. We build self-consistent versions of Maynard Smith's simple evolutionary game between males and females over parental care, and incorporate consequences of anisogamy for gamete production and its trade-off with parental care, and for patterns of mate limitation. As male mating opportunities are limited by females, frequency-dependent selection acts on male strategies. Assuming synchrony of matings in the population, our analytical models find either symmetric sex roles or male-biased care as an evolutionarily stable strategy (ESS), in contrast to Trivers' hypothesis. We simulate evolution in asynchronously mating populations and find that diverse parental roles, including female care, can be ESS depending on the parameters. When caring males can also remate, or when females can increase the clutch size by deserting, there is stronger selection for male-biased care. Hence, we argue that the mating-caring trade-off for males is neither a necessary consequence of anisogamy nor sufficient to select for female-biased care. Instead, the factors excluded from our models—costly competitive traits, sexual selection, and partial parentage—may be necessary for the parental investment hypothesis to work.  相似文献   

7.
The benefits obtained from mating are usually condition‐dependent, favouring the evolution of flexible investment during copulation; for example, in terms of invested time, energy or sperm. Flexible investment strategies are predicted to depend on the likelihood of acquiring alternative mates and therefore they should depend on the timing of mate encounter. However, scarce experimental evidence for this hypothesis exists. In the present study, we manipulated the time delay until first mating and the interval between first and second mating in the polygynandrous common lizard Zootoca vivipara. We determined treatment effects on fertilization success and copulation duration, with the latter being a proxy for investment in mating and for the quantity of transferred sperm. The duration of the second copulation decreased with increasing inter‐mating interval and depended on the fertilization success of first mates. The former provides evidence for time‐dependent investment strategies, most likely resulting from the progression of the female's reproductive cycle. The fertilization success of first mates increased with increasing inter‐mating interval and was higher when females were closer to ovulation, showing that flexible investment strategies significantly affected male reproductive success. This indicates fertilization assurance, which may mitigate the negative effects of low population density on reproductive success (e.g. Allee effects).  相似文献   

8.
H. Kokko 《Ecology letters》2001,4(4):322-326
“Good genes” models of mate choice are commonly tested by examining whether attractive males sire offspring with improved survival. If offspring do not survive better (or indeed survive less well), but instead inherit the attractiveness of their father, results are typically interpreted to support the Fisherian process, which allows the evolution of preferences for arbitrary traits. Here, I show that the above view is mistaken. Because of life‐history trade‐offs, an attractive male may perform less well in other components of fitness. A female obtains a “good genes” benefit whenever males show heritable variation in quality, even if high‐quality males invest so much in sexual advertisement that attractiveness has no positive correlation with any other life‐history trait than male mating success itself. Therefore, a negative correlation between attractiveness and viability does not falsify good genes, if mating with a high‐quality male results on average in superior offspring performance (mating success of sons included). The heritable “good genes” benefit can be sustained even if sexually antagonistic genes cause female offspring sired by high‐quality males to survive and reproduce less well. Neglecting the component of male mating success from measurements of fitness returns from sons and daughters will bias the advantage of mating with a high‐quality male downwards. This result may partly account for the rather weak “good genes” effects found in a recent meta‐analysis.  相似文献   

9.
The evolution of avian parental care   总被引:4,自引:0,他引:4  
A stage model traces key behavioural tactics and life-history traits that are involved in the transition from promiscuity with no parental care, the mating system that typifies reptiles, to that typical of most birds, social monogamy with biparental care. In stage I, females assumed increasing parental investment in precocial young, female choice of mates increased, female-biased mating dispersal evolved and population sex ratios became male biased. In stage II, consortships between mating partners allowed males to attract rare social mates, provided a mechanism for paternity assessment and increased female ability to assess mate quality. In stage III, relative female scarcity enabled females to demand parental investment contributions from males having some paternity certainty. This innovation was facilitated by the nature of avian parental care; i.e. most care-giving activities can be adopted in small units. Moreover, the initial cost of care giving to males was small compared with its benefit to females. Males, however, tended to decline to assume non-partitionable, risky, or relatively costly parental activities. In stage IV, altriciality coevolved with increasing biparental care, resulting in social monogamy. Approaches for testing behavioural hypotheses are suggested.  相似文献   

10.
The evolution of the primary sex ratio, the proportion of male births in an individual's offspring production strategy, is a frequency‐dependent process that selects against the more common sex. Because reproduction is shaped by the entire life cycle, sex ratio theory would benefit from explicitly two‐sex models that include some form of life cycle structure. We present a demographic approach to sex ratio evolution that combines adaptive dynamics with nonlinear matrix population models. We also determine the evolutionary and convergence stability of singular strategies using matrix calculus. These methods allow the incorporation of any population structure, including multiple sexes and stages, into evolutionary projections. Using this framework, we compare how four different interpretations of sex‐biased offspring costs affect sex ratio evolution. We find that demographic differences affect evolutionary outcomes and that, contrary to prior belief, sex‐biased mortality after parental investment can bias the primary sex ratio (but not the corresponding reproductive value ratio). These results differ qualitatively from the widely held conclusions of previous models that neglect demographic structure.  相似文献   

11.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

12.
Dispersal is ubiquitous throughout the tree of life: factors selecting for dispersal include kin competition, inbreeding avoidance and spatiotemporal variation in resources or habitat suitability. These factors differ in whether they promote male and female dispersal equally strongly, and often selection on dispersal of one sex depends on how much the other disperses. For example, for inbreeding avoidance it can be sufficient that one sex disperses away from the natal site. Attempts to understand sex‐specific dispersal evolution have created a rich body of theoretical literature, which we review here. We highlight an interesting gap between empirical and theoretical literature. The former associates different patterns of sex‐biased dispersal with mating systems, such as female‐biased dispersal in monogamous birds and male‐biased dispersal in polygynous mammals. The predominant explanation is traceable back to Greenwood's ( 1980 ) ideas of how successful philopatric or dispersing individuals are at gaining mates or the resources required to attract them. Theory, however, has developed surprisingly independently of these ideas: models typically track how immigration and emigration change relatedness patterns and alter competition for limiting resources. The limiting resources are often considered sexually distinct, with breeding sites and fertilizable females limiting reproductive success for females and males, respectively. We show that the link between mating system and sex‐biased dispersal is far from resolved: there are studies showing that mating systems matter, but the oft‐stated association between polygyny and male‐biased dispersal is not a straightforward theoretical expectation. Here, an important understudied factor is the extent to which movement is interpretable as an extension of mate‐searching (e.g. are matings possible en route or do they only happen after settling in new habitat – or can females perhaps move with stored sperm). We also point out other new directions for bridging the gap between empirical and theoretical studies: there is a need to build Greenwood's influential yet verbal explanation into formal models, which also includes the possibility that an individual benefits from mobility as it leads to fitness gains in more than one final breeding location (a possibility not present in models with a very rigid deme structure). The order of life‐cycle events is likewise important, as this impacts whether a departing individual leaves behind important resources for its female or male kin, or perhaps both, in the case of partially overlapping resource use.  相似文献   

13.
In sex‐role‐reversed species, sexual selection acts more strongly on females than on males, a situation that can result in the evolution of secondary sexual traits in females and strong mating preferences in males. While some research exploring mating preferences in sex‐role‐reversed species has been conducted, overall, this topic remains relatively unexplored. The Gulf pipefish, Syngnathus scovelli, is a highly polyandrous pipefish species. Sexual selection is significantly stronger in females than in males, which has led to the evolution of both morphological and behavioral female secondary sexual traits. However, because males gestate the offspring in specialized pouches and make a substantial investment in embryos during development, females may also benefit from being choosy. The goal of this study was to examine both male and female mating preferences in this species. We found that male mating preference was significantly associated with female courtship behavior. Larger females were also able to maintain these behaviors for longer intervals than smaller females. No evidence of female mating preference in regard to male size was observed but the data suggest that male behaviors may be providing positive reinforcement to courting females. This research provides further insight into how mate preferences vary among sex‐role‐reversed species.  相似文献   

14.
Biologists are still discovering diverse and powerful ways sexual conflicts shape biodiversity. The present study examines how the proportion of females in a population that exhibit male mimicry, a mating resistance trait, influences conspecific males’ behavior, condition, and survival. Like most female‐polymorphic damselflies, Ischnura ramburii harbors both “andromorph” females, which closely resemble males, and sexually dimorphic “gynomorph” counterparts. There is evidence that male mimicry helps andromorphs evade detection and harassment, but males can also learn to target locally prevalent morph(s) via prior mate encounters. I hypothesized that the presence of male mimics could therefore predispose males to mate recognition errors, and thereby increase rates of costly male‐male interactions. Consistent with this hypothesis, male‐male interaction rates were highest in mesocosms containing more andromorph (vs. gynomorph) females. Males in andromorph‐biased mesocosms also had lower final body mass and higher mortality than males assigned to gynomorph‐majority treatments. Male survival and body mass were each negatively affected by mesocosm density, and mortality data revealed a marginally significant interaction between andromorph frequency and population density. These findings suggest that, under sufficiently crowded conditions, female mating resistance traits such as male mimicry could have pronounced indirect effects on male behavior, condition, and survival.  相似文献   

15.
The interests of males and females over reproduction rarely coincide and conflicts between the sexes over mate choice, mating frequency, reproductive investment, and parental care are common in many taxa. In Drosophila melanogaster, the optimum mating frequency is higher for males than it is for females. Furthermore, females that mate at high frequencies suffer significant mating costs due to the actions of male seminal fluid proteins. Sexual conflict is predicted to lead to sexually antagonistic coevolution, in which selection for adaptations that benefit males but harm females is balanced by counterselection in females to minimize the extent of male-induced harm. We tested the prediction that elevated sexual conflict should select for increased female resistance to male-induced harm and vice versa. We manipulated the intensity of sexual conflict by experimentally altering adult sex ratio. We created replicated lines of D. melanogaster in which the adult sex ratio was male biased (high conflict lines), equal (intermediate conflict lines), or female biased (low conflict lines). As predicted, females from high sexual conflict lines lived significantly longer in the presence of males than did females from low conflict lines. Our conclusion that the evolutionary response in females was to the level of male-induced harm is supported by the finding that there were no female longevity differences in the absence of males. Differences between males in female harming ability were not detected. This suggests that the response in females was to differences between selection treatments in mating frequency, and not to differences in male harmfulness.  相似文献   

16.
Which sex should care for offspring is a fundamental question in evolution. Invertebrates, and insects in particular, show some of the most diverse kinds of parental care of all animals, but to date there has been no broad comparative study of the evolution of parental care in this group. Here, we test existing hypotheses of insect parental care evolution using a literature‐compiled phylogeny of over 2000 species. To address substantial uncertainty in the insect phylogeny, we use a brute force approach based on multiple random resolutions of uncertain nodes. The main transitions were between no care (the probable ancestral state) and female care. Male care evolved exclusively from no care, supporting models where mating opportunity costs for caring males are reduced—for example, by caring for multiple broods—but rejecting the “enhanced fecundity” hypothesis that male care is favored because it allows females to avoid care costs. Biparental care largely arose by males joining caring females, and was more labile in Holometabola than in Hemimetabola. Insect care evolution most closely resembled amphibian care in general trajectory. Integrating these findings with the wealth of life history and ecological data in insects will allow testing of a rich vein of existing hypotheses.  相似文献   

17.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   

18.
Observations of male mate choice are increasingly common, even in species with traditional sex roles. In addition, female traits that bear the hallmarks of secondary sexual characters are increasingly reported. These concurrent empirical trends have led to the repeated inference that, even under polygyny, male mate choice is a mechanism of sexual selection on female traits. It is often either assumed or argued that in these cases females are competing for males of superior “quality”; females might experience sexual selection under polygyny if they compete for mates that provide either direct or indirect benefits. However, the theoretical foundation of this testable hypothesis remains largely uninvestigated. We develop a population genetic model to probe the logic of this hypothesis and demonstrate that, contrary to common inferences, male mate choice, variation in male quality (in the form of a direct fecundity benefit to females), and female ornamentation can coexist in a population without any sexual selection on female ornamentation taking place at all. Furthermore, even in a “best case scenario” where high quality males with a preference for ornamented females are able to mate disproportionately more often with them, the evolution of female traits by sexual selection may be relatively weak. We discuss the implication of these findings for ongoing empirical and theoretical research on the evolution of sexual‐signaling in females.  相似文献   

19.
Although there is continuing debate about whether sexual selection promotes or impedes adaptation to novel environments, the role of mating behavior in such adaptation remains largely unexplored. We investigated the evolution of mating behavior (latency to mating, mating probability and duration) in replicate populations of seed beetles Callosobruchus maculatus subjected to selection on life‐history (“Young” vs. “Old” reproduction) under contrasting regimes of sexual selection (“Monogamy” vs. “Polygamy”). Life‐history selection is predicted to favor delayed mating in “Old” females, but sexual conflict under polygamy can potentially retard adaptive life‐history evolution. We found that life‐history selection yielded the predicted changes in mating behavior, but sexual selection regime had no net effect. In within‐line crosses, populations selected for late reproduction showed equally reduced early‐life mating probability regardless of mating system. In between‐line crosses, however, the effect of life‐history selection on early‐life mating probability was stronger in polygamous lines than in monogamous ones. Thus, although mating system influenced male–female coevolution, removal of sexual selection did not affect the adaptive evolution of mating behavior. Importantly, our study shows that the interaction between sexual selection and life‐history selection can result in either increased or decreased reproductive divergence depending on the ecological context.  相似文献   

20.
1. In some insects that overwinter as adults, mating occurs both before and after overwintering. Two hypotheses have been proposed to explain the adaptive significance of pre‐overwintering copulation of females. One is the bet‐hedging hypothesis, which explains pre‐overwintering copulation as a preparation for less chance of mating in the following spring. The other is the nuptial gift hypothesis, which states that secretions derived from males increase overwintering success of females. 2. In Eurema mandarina, both diapause autumn‐ and non‐diapause summer‐form male adults emerge with autumn‐form female adults in the last generation in a year. Most autumn‐form females mate with summer‐form males before winter, and re‐mate with autumn‐form males in the following spring. Because autumn‐form females have sufficient chances for mating after overwintering, the nuptial gift hypothesis has been regarded as the more probable hypothesis. 3. To test the nuptial gift hypothesis, the survival period was compared under short‐day conditions at 10 °C between mated and unmated females that had been reared on sucrose solution at 25 °C for 15–21 days. The mated females had significantly greater longevity than the unmated females, supporting the nuptial gift hypothesis. Body size also affected the survival period. 4. The results suggest that the nuptial gift is an important factor for the evolution of pre‐overwintering copulation in species in which females mate both before and after overwintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号