首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多次交配是昆虫中一种重要的交配行为,许多学者对此开展了大量的研究以解释雌性昆虫多次交配行为的适应性意义。在鳞翅目蛾类昆虫中存在两种典型的交配策略(单配制和多配制),但这两类交配策略的雌蛾进行多次交配获得哪些利益和代价目前仍不清楚。本文采用Meta分析法对搜集到的24篇文献中来自8科25种蛾类进行分析,比较两种不同交配策略的雌蛾多次交配与其适应性参数之间的关系。结果表明,多次交配行为明显增加了雌蛾的产卵量和卵的孵化率,而导致寿命的下降。其中,多次交配导致多配制蛾类产卵量和卵的孵化率明显的增加,但寿命趋于延长却没有明显差异;而对单配制蛾类而言,多次交配对相应的适应性参数均没有明显的影响。  相似文献   

2.
3.
Male reproductive success generally increases with number of mates but this need not be true for females. If females are the limiting sex, as few as one mate can be optimal. Despite the theoretical differences driving multiple mating in the sexes, multiple mating is the norm rather than the exception. Empirical investigations are therefore required to determine why females mate with multiple males. Both nonadaptive (correlated responses to selection on males, given the mean mating rates have to be the same) and adaptive (direct or indirect fitness benefits) can drive the evolution of multiple mating in females. Females of the burying beetle Nicorphorus vespilloides often mate repeatedly with the same male, but this appears to be a correlated response to selection on males rather than reflecting direct benefits to females for multiple mating. However, an unexamined alternative to this nonadaptive explanation is that females benefit by mating with multiple different males and therefore are selected for general promiscuity. Here we examine if mating polyandrously provides fitness benefits by examing the effects of number of mates (1, 2 or 3), mating system (monogamous, polyandrous) and their interaction. The only significant influence was mating more than once. This did not depend on type of mating. We suggest that unlike most other species examined, in N. vespilloides mating with the same male repeatedly or with several different males reflects an indiscriminate willingness to mate as a result of correlated selection on males for high rates of mating.  相似文献   

4.
It is generally thought that females can receive more of the material benefits from males by increasing mating frequency and polyandry can lead to greater reproductive success. The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), is a highly promiscuous species, in which females or males can readily mate repeatedly with a given partner or multiple partners at a very high frequency. In the present study, the effect of mating frequency (number of matings) and mating pattern (polyandry vs. monogamy) on female reproductive fitness was investigated by measuring fecundity, fertility, and female longevity. The results indicated that increased female mating frequency with the same male did not result in variation in lifetime fecundity, but significantly increased fertility and decreased female longevity. Moreover, five copulations were sufficient to acquire maximal reproductive potential. Female lifetime fecundity also did not differ between polyandrous and monogamous treatments. However, monogamous females exhibited a significant increase in fertility and significant prolongation of longevity compared with polyandrous females, further demonstrating that monogamy is superior to polyandry in this beetle.  相似文献   

5.
Female multiple mating (or polyandry) is considered to act as a genetic bet-hedging mechanism, by which females can reduce the assessment error in regard to mates genetic quality when only uncertain information is available. In spite of frequent verbal arguments, no theoretical examination has been carried out to determine the effectiveness of bet-hedging by multiple mating. In the present paper, I show that three factors, female population size, remating costs and environmental fluctuation, all affect the effectiveness of bet-hedging. A mathematical model predicts that bet-hedging effectively works only in small populations, and computer simulations were used to confirm this prediction. The results of simulations differed according to the degree of environmental fluctuation. In relatively stable environments, if there is no remating cost, the fixation probability of a multiple mating strategy is slightly higher than that of a single mating strategy, independent of female population size. However, with very slight fitness costs, multiple mating drastically loses its advantage as population size increases, and almost always becomes extinct within large populations. This means that the evolution of polyandry solely by the mechanism of bet-hedging is unlikely in stable environments. However, in unpredictable environments, or when negative frequency-dependent selection on fitness-related loci is introduced, a multiple mating strategy is sometimes successful against a single mating strategy, even if it entails a small fitness cost. Therefore, female multiple mating may possibly evolve only in these limited conditions. In most cases, some deterministic mechanisms such as postcopulatory sperm selection by multiply mated females (or direct material benefits) are more reasonable as the evolutionary causes of polyandry.  相似文献   

6.
Sexual selection theory assumes that maximizing fitness is the ultimate goal in every mating decision. Fitness can be maximized directly by increasing the number of offspring (direct benefits) or indirectly by maximizing offspring's lifetime reproductive success (indirect benefits). Whereas there is considerable evidence in the literature for the influence of mating decisions on direct benefits, indirect benefits have been more elusive. Here, we review the variables that influence mating decisions made by females of freshwater fish and how these affect their fitness directly, as well as indirectly. Females enhance their fitness by matching their mating decisions to current environmental conditions, using a wide range of pre- and post-copulation mechanisms that enable them to maximize benefits from mating. Male sexual traits and courtship displays are signals used by females as a way of assessing male quality in terms of both direct and indirect benefits. Polyandry is very common among freshwater fish species, and indirect benefits have been hypothesized as drivers of its predominance. Despite intensive theoretical work, and multiple suggestions of the effects of indirect benefits, to date no study has been able to demonstrate experimentally the existence of indirect benefits in freshwater fish species. Additionally, most studies of direct benefits measure short-term benefits of mating decisions. In both cases, lifetime reproductive success is not assessed. Therefore, we are led to conclude that evidence as to whether female mating decisions result in direct and/or indirect benefits in freshwater fish species is still lacking. These results should be considered in light of the ongoing debate about the significance of indirect benefits in female mating decisions.  相似文献   

7.
The tendency of females to mate with multiple males is often explained by direct and indirect benefits that could outweigh the many potential costs of multiple mating. However, behaviour can only evolve in response to costs and benefits if there is sufficient genetic variation on which selection can act. We followed 108 mating chases of 85 North American red squirrels (Tamiasciurus hudsonicus) during 4 years, to measure each female's degree of multiple male mating (MMM), and used an animal model analysis of our multi-generational pedigree to provide what we believe is the first estimate of the heritability of MMM in the wild. Female red squirrels were highly polyandrous, mating with an average of 7.0 ± 0.2 males on their day of oestrus. Although we found evidence for moderate levels of additive genetic variation (CV(A) = 5.1), environmental variation was very high (CV(E) = 32.3), which resulted in a very low heritability estimate (h(2) < 0.01). So, while there is genetic variation in this trait, the large environmental variation suggests that any costs or benefits associated with differences among females in MMM are primarily owing to environmental and not genetic differences, which could constrain the evolutionary response to natural selection on this trait.  相似文献   

8.
The consequences of polyandry for female fitness are controversial. Sexual conflict studies and a meta‐analysis of mating rates in insects suggest that there is a longevity cost when females mate repeatedly. Even so, compensatory material benefits can elevate egg production and fertility, partly because polyandry ensures an adequate sperm supply. Polyandry can therefore confer direct benefits. The main controversy surrounds genetic benefits. The argument is analogous to that surrounding the evolution of conventional female mate choice, except that with polyandry it is post‐copulatory mechanisms that might bias paternity towards males with higher breeding values for fitness. Recent meta‐analyses of extra‐pair copulations in birds have cast doubt on whether detectable genetic benefits exist. By contrast, another meta‐analysis showed that polyandry elevates egg hatching success (possibly due to a fertilization bias towards sperm with paternal genes that elevate embryo survival) in insects. A detailed summary of whether polyandry elevates other components of offspring performance is lacking. Here we present a comprehensive meta‐analysis of 232 effect sizes from 46 experimental studies. These experiments were specifically designed to try to quantify the potential genetic benefits of polyandry by controlling fully for the number of matings by females assigned to monandry and polyandry treatments. The bias‐corrected 95% confidence intervals for egg hatching success (d = ?0.01 to 0.61), clutch production (d = 0.07 to 0.45) and fertility (d = 0.04 to 0.40) all suggest that polyandry has a beneficial effect (although P values from parametric tests were marginally non‐significant at P = 0.075, 0.052 and 0.058, respectively). Polyandry was not significantly beneficial for any single offspring performance trait (e.g. growth rate, survival, adult size), but the test power was low due to small sample sizes (suggesting that many more studies are still needed). We then calculated a composite effect size that provides an index of general offspring performance. Depending on the model assumptions, the mean effect of polyandry was either significantly positive or marginally non‐significant. A possible role for publication bias is discussed. The magnitude of the reported potential genetic benefits (d = 0.07 to 0.19) are larger than those from two recent meta‐analyses comparing offspring sired by social and extra‐pair mates in birds (d = 0.02 to 0.04). This difference raises the intriguing possibility that cryptic, post‐copulatory female choice might be more likely to generate ‘good gene’ or ‘compatible gene’ benefits than female choice of mates based on the expression of secondary sexual traits.  相似文献   

9.
Multiple mating or group spawning leads to post‐copulatory sexual selection, which generally favours ejaculates that are more competitive under sperm competition. In four meta‐analyses we quantify the evidence that sperm competition (SC) favours greater sperm number using data from studies of strategic ejaculation. Differential investment into each ejaculate emerges at the individual level if males exhibit phenotypic plasticity in ejaculate properties in response to the likely risk and/or intensity of sperm competition after a given mating. Over the last twenty years, a series of theoretical models have been developed that predict how ejaculate size will be strategically adjusted in relation to: (a) the number of immediate rival males, with a distinction made between 0 versus 1 rival (‘risk’ of SC) and 1 versus several rivals (‘intensity’ of SC); (b) female mating status (virgin or previously mated); and (c) female phenotypic quality (e.g. female size or condition). Some well‐known studies have reported large adjustments in ejaculate size depending on the relevant social context and this has led to widespread acceptance of the claim that strategic sperm allocation occurs in response to each of these factors. It is necessary, however, to test each claim separately because it is easy to overlook studies with weak or negative findings. Compiling information on the variation in outcomes among species is potentially informative about the relevance of these assumptions in different taxa or mating systems. We found strong evidence that, on average, males transfer larger ejaculates to higher quality females. The effect of female mating status was less straightforward and depended on how ejaculate size was measured (i.e. use of proxy or direct measure). There is strong evidence that ejaculate size increased when males were exposed to a single rival, which is often described as a response to the risk of SC. There is, however, no evidence for the general prediction that ejaculate size decreases as the number of rivals increases from one to several males (i.e. in response to a higher intensity of SC which lowers the rate of return per sperm released). Our results highlight how meta‐analysis can reveal unintentional biases in narrative literature reviews. We note that several assumptions of theoretical models can alter an outcome's predicted direction in a given species (e.g. the effect of female mating status depends on whether there is first‐ or last‐male sperm priority). Many studies do not provide this background information and fail to make strong a priori predictions about the expected response of ejaculate size to manipulation of the mating context. Researchers should be explicit about which model they are testing to ensure that future meta‐analyses can better partition studies into different categories, or control for continuous moderator variables.  相似文献   

10.
Females of the predatory mite Parasitus fimetorum (Gamasida; Parasitina) inhabiting animal manure indiscriminately copulate with many mates. The sperm competition between the males was estimated by electrophoresis of allozymes and the effects of multiple mating on female reproduction were investigated. When females were forced to mate only once, their fecundity decreased drastically compared to the case of multiple mating (but longevity was unaffected). When one female mated with two males, the outcome of sperm competition depended greatly upon the mating interval. When the second mating occurred immediately after the first, the female fecundity decreased as in the case of single mating and the second male fertilized only a few eggs. However, when there was an interval of 1 day between the two matings, the females achieved normal fecundity and the second male fertilized approximately half the eggs. This suggests that the spermatophore deposited by the first male may act as a short-term copulatory plug in the female's genital opening. When one female mated with several males with 1 day intervals, three or more males shared fertilization of the eggs. This study suggests that the multiple mating of females is a necessary stimulus to continue oogenesis and some physiological factors for this stimulation may exist in spermatophores.  相似文献   

11.
Bet‐hedging via polyandry (spreading the extinction risk of the female''s lineage over multiple males) may explain the evolution of female multiple mating, which is found in a wide range of animal and plant taxa. This hypothesis posits that females can increase their fitness via polyandrous mating when “unsuitable” males (i.e., males causing reproductive failure for various reasons) are frequent in the population and females cannot discriminate such unsuitable mates. Although recent theoretical studies have shown that polyandry can operate as a bet‐hedging strategy, empirical tests are scarce. In the present study, we tested the bet‐hedging polyandry hypothesis by using the red flour beetle Tribolium castaneum. We compared female reproductive success between monandry and polyandry treatments when females mated with males randomly collected from an experimental population, including 20% irradiated (infertile) males. In addition, we evaluated geometric mean fitness across multiple generations as the index of adaptability of bet‐hedging traits. Polyandrous females showed a significantly higher egg hatching rate and higher geometric mean fitness than monandrous females. These results strongly support the bet‐hedging polyandry hypothesis.  相似文献   

12.
It is well established that females of many species exhibitpolyandry. Although such behavior often increases female fitnessby augmenting fecundity or enhancing the genetic diversity andvigor of their offspring, it often reduces female longevity.It has been argued that trade-offs between these costs and benefitsshould limit the degree to which females remate. However, theexistence of highly polyandrous species suggests substantialpolyandry benefits and/or minimal costs in some systems. Femalesof the leaf beetle, Chrysochus cobaltinus, are extremely polyandrous,providing an opportunity to examine the factors influencingthe evolution of such behaviors. We compared the fecundity andlongevity of singly mated females, females that mated multipletimes with the same male, and females that mated multiple timeswith different males. Compared with females in the single matingtreatment, females in both multiple mating treatments exhibiteda significant reduction in latency to oviposition and, due toan increase in daily egg production, significant increases inlifetime fecundity. This difference diminished as the time sincelast mating increased. There were no differences in fecunditybetween the 2 multiple mating treatments, indicating that mateidentity does not influence the material benefits of multiplemating. Surprisingly, female longevity did not differ amongtreatments. The pronounced fecundity benefits that females gainfrom multiple mating, coupled with a lack of longevity costs,apparently explains the extreme polyandry in this species. Inaddition, the existence of material fitness benefits via conspecificmatings raises the intriguing possibility that in a C. cobaltinusChrysochusauratus hybrid zone, heterospecific matings may confer similarbenefits to Chrysochus females.  相似文献   

13.
In insects, repeated mating by females may have direct effects on female fecundity, fertility, and longevity. In addition, a female's remating rate affects her fitness through mortality costs of male harassment and ecological risks of mating such as predation. We analyse a model where these female fitness factors are put into their life-history context, and traded against each other, while accounting for limitations because of mate availability. We solve analytically for the condition when female multiple mating will evolve. We show that the probability that a female mates with a courting male decreases with increases in population density. The extent of conflict between the sexes thus automatically becomes larger at higher densities. However, because at higher densities females meet males at a higher rate, the resulting ESS female remating rate is independent of population density. The female remating probability is in conflict with male adaptations that increase male mating rate by persuading or forcing females to mate, and also in conflict with male adaptations for protecting the own sperm from being removed by future female mates. We show that the relative importance of these conflicts depends on population density.  相似文献   

14.
In species where females gain a nutritious nuptial gift during mating, the balance between benefits and costs of mating may depend on access to food. This means that there is not one optimal number of matings for the female but a range of optimal mating numbers. With increasing food availability, the optimal number of matings for a female should vary from the number necessary only for fertilization of her eggs to the number needed also for producing these eggs. In three experimental series, the average number of matings for females of the nuptial gift‐giving spider Pisaura mirabilis before egg sac construction varied from 2 to 16 with food‐limited females generally accepting more matings than well‐fed females. Minimal level of optimal mating number for females at satiation feeding conditions was predicted to be 2–3; in an experimental test, the median number was 2 (range 0–4). Multiple mating gave benefits in terms of increased fecundity and increased egg hatching success up to the third mating, and it had costs in terms of reduced fecundity, reduced egg hatching success after the third mating, and lower offspring size. The level of polyandry seems to vary with the female optimum, regulated by a satiation‐dependent resistance to mating, potentially leaving satiated females in lifelong virginity.  相似文献   

15.
Understanding why females mate multiply is a major issue in evolutionary ecology. We investigated the consequences of an asynchronous arrival pattern on male competition and multiple paternity in the apparently monoandrous agile frog ( Rana dalmatina ). The largest frogs arrived first and both males and females lost weight significantly during the spawning period. Asynchronous arrival at breeding sites resulted in a male-biased operational sex ratio (OSR). The OSR was more strongly male-biased at the beginning and at the end of the breeding period when the number of satellite males increased. All females mated only once, but multiple paternity within clutches occurred at the beginning and the end of the breeding period. The influence of asynchronous arrival and biased sex ratio suggests that reduced variance or bet-hedging promoting female fitness had only a reduced role in the evolution of polyandry, and polyandry is likely to be associated with male benefits. Polyandry in frogs can be explained either by forced mating as a result of sexual conflict or by clutch piracy. By modifying intrasexual competition, asynchronous arrival and changes in OSR may have a decisive influence upon the evolution of mating systems and favour both polyandry and stable coexistence of alternative mating behaviour.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 191–200.  相似文献   

16.
In species where males provide nuptial gifts, females can improve their nutritional status and thus increase their fecundity by mating when in need of resources. However, mating can be costly, so females should only mate to acquire resources when the need for resources is large, such as when females are nutritionally‐deprived. Two populations of the seed‐feeding beetle Callosobruchus maculatus, a species that produces relatively large nuptial gifts, are used to test whether female nutritional status affects mating behaviour. Female access to water, sugar and yeast are manipulated and the fitness consequences of these manipulations are examined together with the effects of diet on the propensity of nonvirgin females to mate. Access to water has a small but significant effect on mass loss over time, lifespan and fecundity of females, relative to unfed controls. Access to sugar (dissolved in water) improves female fecundity and lifespan above that of hydrated females but access to yeast has no positive effects on female survival or reproduction. Diet has a large effect on both receptivity of nonvirgin females to a male and how quickly they accept that male. Unfed females are both more likely to mate, and accept a mate more quickly, than females provided access to water, which are more likely to mate and accept a mate more quickly than females provided with sugar. This rank order of behaviours matches the order predicted if females increase their mating rate when nutritionally deprived (i.e. it matches the effect of diet on female fitness). The results obtained also suggest that mate choice may be condition‐dependent: females from one population (Burkina Faso) show a preference for large males when well‐fed but not when unfed, although this result is not found in a second population (South India). It is concluded that nutritionally‐deprived females are more receptive to mates than are well‐fed females, consistent with the hypothesis that females ‘forage’ for nuptial gifts, or at least more willingly accept sperm in exchange for nuptial gifts, when they are nutritionally deprived.  相似文献   

17.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

18.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

19.
Polyandry is a common phenomenon and challenges the traditional view of stronger sexual selection in males than in females. In simultaneous hermaphrodites, the physical proximity of both sex functions was long thought to preclude the operation of sexual selection. Laboratory studies suggest that multiple mating and polyandry in hermaphrodites may actually be common, but data from natural populations are sparse. We therefore estimated the rate of multiple paternity and its seasonal variability in the annual, sperm‐storing, simultaneously hermaphroditic freshwater snail Radix balthica for the entire duration of the reproductive lifespan. We also tested whether multiple paternity was associated with clutch size or embryonic development. To obtain these data, we measured and genotyped 60 field‐collected egg clutches using nine highly polymorphic microsatellite markers. Overall, 50% of the clutches had multiple fathers, and both the frequency (20–93% of clutches) and magnitude of multiple paternity (mean 1.3–3.8 fathers per clutch) substantially increased over time, probably because of extensive sperm storage. Most multiply sired clutches (83%) had a dominant father, but neither clutch size nor the proportion of developed embryos per clutch was associated with levels of multiple paternity. Both the evident promiscuity and the frequent skew of paternity shares suggest that sexual selection may be an important evolutionary force in the study population.  相似文献   

20.
豆野螟Maruca vitrata(Fabricius)是一种严重的泛热带豆类蔬菜害虫。本文研究了豆野螟延迟交尾和多次交尾对其生殖的影响。延迟交尾实验结果表明:豆野螟雌雄同时延迟交尾,雌雄虫的寿命、产卵量均表现为先上升后下降的趋势,但是对卵的孵化率没有显著影响;雌虫延迟交尾,随着延迟时间的增加,雌虫的寿命、产卵量、卵的孵化率表现为下降的趋势,而雄虫的寿命延迟交尾第3天达到最大值;雄虫延迟交尾,随着延迟交尾时间的增加,雌雄虫的寿命、产卵量均表现为先上升后下降的趋势,卵的孵化率随着延迟逐渐下降。多次交尾实验结果表明,随着雄虫交尾次数的增加,成功交尾率逐渐降低,用于交尾的时间延长,雌虫和相应雄虫的寿命逐渐缩短,雌虫的产卵量下降,但对卵的孵化率影响不大;豆野螟雌虫一生只交尾一次,未见到雌虫2次交尾。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号