首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.  相似文献   

2.
N-terminal truncation of the Escherichia coli ethanolamine ammonia-lyase β-subunit does not affect the catalytic properties of the enzyme (Akita, K., Hieda, N., Baba, N., Kawaguchi, S., Sakamoto, H., Nakanishi, Y., Yamanishi, M., Mori, K., and Toraya, T. (2010) J. Biochem. 147, 83–93). The binary complex of the truncated enzyme with cyanocobalamin and the ternary complex with cyanocobalamin or adeninylpentylcobalamin and substrates were crystallized, and their x-ray structures were analyzed. The enzyme exists as a trimer of the (αβ)2 dimer. The active site is in the (β/α)8 barrel of the α-subunit; the β-subunit covers the lower part of the cobalamin that is bound in the interface of the α- and β-subunits. The structure complexed with adeninylpentylcobalamin revealed the presence of an adenine ring-binding pocket in the enzyme that accommodates the adenine moiety through a hydrogen bond network. The substrate is bound by six hydrogen bonds with active-site residues. Argα160 contributes to substrate binding most likely by hydrogen bonding with the O1 atom. The modeling study implies that marked angular strains and tensile forces induced by tight enzyme-coenzyme interactions are responsible for breaking the coenzyme Co–C bond. The coenzyme adenosyl radical in the productive conformation was modeled by superimposing its adenine ring on the adenine ring-binding site followed by ribosyl rotation around the N-glycosidic bond. A major structural change upon substrate binding was not observed with this particular enzyme. Gluα287, one of the substrate-binding residues, has a direct contact with the ribose group of the modeled adenosylcobalamin, which may contribute to the substrate-induced additional labilization of the Co–C bond.  相似文献   

3.
Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 β-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6β1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6β1-313. We found that PDE6β1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αβ catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6β protein, PDE6β1-313 and PDE6β1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation.  相似文献   

4.
The inner mitochondrial membrane plays a crucial role in cellular lipid homeostasis through biosynthesis of the non-bilayer-forming lipids phosphatidylethanolamine and cardiolipin. In the yeast Saccharomyces cerevisiae, the majority of cellular phosphatidylethanolamine is synthesized by the mitochondrial phosphatidylserine decarboxylase 1 (Psd1). The biogenesis of Psd1 involves several processing steps. It was speculated that the Psd1 precursor is sorted into the inner membrane and is subsequently released into the intermembrane space by proteolytic removal of a hydrophobic sorting signal. However, components involved in the maturation of the Psd1 precursor have not been identified. We show that processing of Psd1 involves the action of the mitochondrial processing peptidase and Oct1 and an autocatalytic cleavage at a highly conserved LGST motif yielding the α- and β-subunit of the enzyme. The Psd1 β-subunit (Psd1β) forms the membrane anchor, which binds the intermembrane space-localized α-subunit (Psd1α). Deletion of a transmembrane segment in the β-subunit results in mislocalization of Psd1 and reduced enzymatic activity. Surprisingly, autocatalytic cleavage does not depend on proper localization to the inner mitochondrial membrane. In summary, membrane integration of Psd1 is crucial for its functionality and for maintenance of mitochondrial lipid homeostasis.  相似文献   

5.
An X-prolyl-dipeptidyl peptidase has been purified from Lactobacillus sakei by ammonium sulfate fractionation and five chromatographic steps, which included hydrophobic interaction, anion-exchange chromatography, and gel filtration chromatography. This procedure resulted in a recovery yield of 7% and an increase in specificity of 737-fold. The enzyme appeared to be a dimer with a subunit molecular mass of approximately 88 kDa. Optimal activity was shown at pH 7.5 and 55°C. The enzyme was inhibited by serine proteinase inhibitors and several divalent cations (Cu2+, Hg2+, and Zn2+). The enzyme almost exclusively hydrolyzed X-Pro from the N terminus of each peptide as well as fluorescent and colorimetric substrates; it also hydrolyzed X-Ala at the N terminus, albeit at lower rates. Km s for Gly-Pro- and Lys-Ala-7-amido-4-methylcoumarin were 29 and 88 μM, respectively; those for Gly-Pro- and Ala-Pro-p-nitroanilide were 192 and 50 μM, respectively. Among peptides, β-casomorphin 1-3 was hydrolyzed at the highest rates, while the relative hydrolysis of the other tested peptides was only 1 to 12%. The potential role of the purified enzyme in the proteolytic pathway by catalyzing the hydrolysis of peptide bonds involving proline is discussed.  相似文献   

6.
A novel liquefying α-amylase (LAMY) was found in cultures of an alkaliphilic Bacillus isolate, KSM-1378. The specific activity of purified LAMY was approximately 5,000 U mg of protein−1, a value two- to fivefold greater between pH 5 and 10 than that of an industrial, thermostable Bacillus licheniformis enzyme. The enzyme had a pH optimum of 8.0 to 8.5 and displayed maximum activity at 55°C. The molecular mass deduced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 53 kDa, and the apparent isoelectric point was around pH 9. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltopentaose, maltohexaose, and maltose as major end products after completion of the reaction. Maltooligosaccharides in the maltose-to-maltopentaose range were unhydrolyzable by the enzyme. The structural gene for LAMY contained a single open reading frame 1,548 bp in length, corresponding to 516 amino acids that included a signal peptide of 31 amino acids. The calculated molecular mass of the extracellular mature enzyme was 55,391 Da. LAMY exhibited relatively low amino acid identity to other liquefying amylases, such as the enzymes from B. licheniformis (68.9%), Bacillus amyloliquefaciens (66.7%), and Bacillus stearothermophilus (68.6%). The four conserved regions, designated I, II, III, and IV, and the putative catalytic triad were found in the deduced amino acid sequence of LAMY. Essentially, the sequence of LAMY was consistent with the tertiary structures of reported amylolytic enzymes, which are composed of domains A, B, and C and which include the well-known (α/β)8 barrel motif in domain A.  相似文献   

7.
The kinetics of accumulation (per milliliter of culture) of the α- and β- subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The β-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the α-subunit holoenzyme(s). After 120 minutes, the α-subunit ceased accumulating and thereafter remained at a constant level (i.e. steady state between synthesis and degradation). From pulsechase experiments, using 35SO4 and immunochemical procedures, the rate of synthesis of the α-subunit was shown to be greater than the β-subunit during the first 80 minutes of induction. The α- and β-subunits had different rates of degradation during the induction period (t½ = 50 versus 150 minutes, respectively) and during the deinduction period (t½ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed.  相似文献   

8.
AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding β-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and β-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain β-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.  相似文献   

9.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.  相似文献   

10.
Plant Sucrose non-Fermenting 1-Related Protein Kinase1 (SnRK1) complexes are members of the Snf1/AMPK/SnRK protein kinase family and play important roles in many aspects of metabolism. In tomato (Solanum lycopersicum, Sl), only one α-subunit of the SnRK1 complex, SlSnRK1.1, has been characterized to date. In this study, the phylogenetic placement and in vitro kinase activity of a second tomato SnRK1 α-subunit, SlSnRK1.2, were characterized. Interestingly, in the phylogenetic analysis of SnRK1 sequences from monocots and dicots SlSnRK1.2 clusters only with other Solanaceae SnRK1.2 sequences, suggesting possible functional divergence of these kinases from other SnRK1 kinases. For analysis of kinase activity, SlSnRK1.2 was able to autophosphorylate, phosphorylate the complex β-subunits, and phosphorylate the SnRK1 AMARA peptide substrate, all with drastically lower overall kinase activity compared to SlSnRK1.1. Activation by the upstream kinase SlSnAK was able to increase the kinase activity of both SlSnRK1.1 and SlSnRK1.2, although the increase is less dramatic for SlSnRK1.2. The highest kinase activity on the AMARA peptide for SlSnRK1.2 was seen when reconstituting the complex in vitro with SlSip1 as the β-subunit. In comparison, SlSnRK1.1 showed the lowest kinase activity on the AMARA peptide when SlSip1 was used. These studies suggest the SlSnRK1.2 phylogenetic divergence and lower SlSnRK1.2 kinase activity compared to SlSnRK1.1 may be indicative of different in vivo roles for each kinase.  相似文献   

11.
An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained.  相似文献   

12.
The Golgi-resident N-acetylglucosamine-1-phosphotransferase (PT) complex is composed of two α-, β-, and γ-subunits and represents the key enzyme for the biosynthesis of mannose 6-phosphate recognition marker on soluble lysosomal proteins. Mutations in the PT complex cause the lysosomal storage diseases mucolipidosis II and III. A prerequisite for the enzymatic activity is the site-1 protease-mediated cleavage of the PT α/β-subunit precursor protein in the Golgi apparatus. Here, we have investigated structural requirements of the PT α/β-subunit precursor protein for its efficient export from the endoplasmic reticulum (ER). Both wild-type and a cleavage-resistant type III membrane PT α/β-subunit precursor protein are exported whereas coexpressed separate α- and β-subunits failed to reach the cis-Golgi compartment. Mutational analyses revealed combinatorial, non-exchangeable dileucine and dibasic motifs located in a defined sequence context in the cytosolic N- and C-terminal domains that are required for efficient ER exit and subsequent proteolytic activation of the α/β-subunit precursor protein in the Golgi. In the presence of a dominant negative Sar1 mutant the ER exit of the PT α/β-subunit precursor protein is inhibited indicating its transport in coat protein complex II-coated vesicles. Expression studies of missense mutations identified in mucolipidosis III patients that alter amino acids in the N- and C-terminal domains demonstrated that the substitution of a lysine residue in close proximity to the dileucine sorting motif impaired ER-Golgi transport and subsequent activation of the PT α/β-subunit precursor protein. The data suggest that the oligomeric type III membrane protein PT complex requires a combinatorial sorting motif that forms a tertiary epitope to be recognized by distinct sites within the coat protein complex II machinery.  相似文献   

13.
The central stalk of the ATP synthase is an elongated hetero-oligomeric structure providing a physical connection between the catalytic sites in F1 and the proton translocation channel in F0 for energy transduction between the two subdomains. The shape of the central stalk and relevance to energy coupling are essentially the same in ATP synthases from all forms of life, yet the protein composition of this domain changed during evolution of the mitochondrial enzyme from a two- to a three-subunit structure (γ, δ, ε). Whereas the mitochondrial γ- and δ-subunits are homologues of the bacterial central stalk proteins, the deliberate addition of subunit ε is poorly understood. Here we report that down-regulation of the gene (ATP15) encoding the ε-subunit rapidly leads to lethal F0-mediated proton leaks through the membrane because of the loss of stability of the ATP synthase. The ε-subunit is thus essential for oxidative phosphorylation. Moreover, mutations in F0 subunits a and c, which slow the proton translocation rate, are identified that prevent ε-deficient ATP synthases from dissipating the electrochemical potential. Cumulatively our data lead us to propose that the ε-subunit evolved to permit operation of the central stalk under the torque imposed at the normal speed of proton movement through mitochondrial F0.  相似文献   

14.
The regulation of cotyledon-specific gene expression by exogenously applied abscisic acid (ABA) was studied in developing cultured cotyledons of soybean (Glycine max L. Merr. cv Provar). When immature cotyledons were cultured in modified Thompson's medium, the addition of ABA resulted in an increased concentration of the β-subunit of β-conglycinin, one of the major storage proteins of soybean seeds. The amount of the α′-and α-subunits of β-conglycinin was relatively unaffected by the ABA treatment. When fluridone, an inhibitor of carotenoid biosynthesis that has been shown to decrease ABA levels in plant tissues, was added to the medium the level of ABA and the β-subunit decreased in the cotyledons. Increasing the concentration of sucrose in the culture medium caused an increase in the concentration of ABA and β-subunit in the cotyledons. When in vitro translation products from RNA isolated from cotyledons cultured with ABA were immunoprecipitated with antiserum against β-conglycinin, there was an increased amount of pre-β-subunit polypetide compared to the translation products from RNA isolated from control cotyledons. The pre-β-subunit polypeptide was not detected in translation products from RNA isolated from fluridone-treated cotyledons. Nucleic acid hybridization reactions showed that the level of β-subunit mRNA was higher in ABA-treated cotyledons compared to the control, and was lower in the fluridone-treated cotyledons. We have shown that exogenous ABA is able to modulate the accumulation of the β-subunit of β-conglycinin in developing cultured soybean cotyledons.  相似文献   

15.
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the α-subunit of eukaryotic initiation factor 2 (eIF2α), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2α kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2α kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA·Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2α.  相似文献   

16.
Adenylylsulfate reductase (adenosine 5′-phosphosulfate [APS] reductase [APSR]) plays a key role in catalyzing APS to sulfite in dissimilatory sulfate reduction. Here, we report the crystal structure of APSR from Desulfovibrio gigas at 3.1-Å resolution. Different from the α2β2-heterotetramer of the Archaeoglobus fulgidus, the overall structure of APSR from D. gigas comprises six αβ-heterodimers that form a hexameric structure. The flavin adenine dinucleotide is noncovalently attached to the α-subunit, and two [4Fe-4S] clusters are enveloped by cluster-binding motifs. The substrate-binding channel in D. gigas is wider than that in A. fulgidus because of shifts in the loop (amino acid 326 to 332) and the α-helix (amino acid 289 to 299) in the α-subunit. The positively charged residue Arg160 in the structure of D. gigas likely replaces the role of Arg83 in that of A. fulgidus for the recognition of substrates. The C-terminal segment of the β-subunit wraps around the α-subunit to form a functional unit, with the C-terminal loop inserted into the active-site channel of the α-subunit from another αβ-heterodimer. Electrostatic interactions between the substrate-binding residue Arg282 in the α-subunit and Asp159 in the C terminus of the β-subunit affect the binding of the substrate. Alignment of APSR sequences from D. gigas and A. fulgidus shows the largest differences toward the C termini of the β-subunits, and structural comparison reveals notable differences at the C termini, activity sites, and other regions. The disulfide comprising Cys156 to Cys162 stabilizes the C-terminal loop of the β-subunit and is crucial for oligomerization. Dynamic light scattering and ultracentrifugation measurements reveal multiple forms of APSR upon the addition of AMP, indicating that AMP binding dissociates the inactive hexamer into functional dimers, presumably by switching the C terminus of the β-subunit away from the active site. The crystal structure of APSR, together with its oligomerization properties, suggests that APSR from sulfate-reducing bacteria might self-regulate its activity through the C terminus of the β-subunit.Sulfate-reducing bacteria (SRB) are a special group of prokaryotes that are found in sulfate-rich environments because of their ability to metabolize sulfate. SRB use sulfate as the final electron acceptor in various anaerobic environments, such as soil, oil fields, the sea, or the innards of animals or even human beings (10, 11, 19, 25, 33). Their ability to degrade sulfate offers protection against environmental pollution. SRB can remove sulfate and toxic heavy atoms from factory waste waters (12). The Desulfovibrio species is a much-studied representative of SRB, and Desulfovibrio gigas has been studied under many diverse conditions to elucidate metabolic pathways (23, 35).Sulfate reduction is one of the oldest forms of cellular metabolism. The reduction can be either assimilatory or dissimilatory. Sulfate is the terminal electron acceptor in dissimilatory reduction and the raw material for the biosynthesis of cysteine in assimilatory reduction. The latter type of reduction occurs in archaebacteria, bacteria, fungi, and plants via various pathways (17). For example, in Escherichia coli, the reduction initially catalyzes sulfate to adenosine 5′-phosphosulfate (APS) by ATP sulfurylase. APS is then phosphorylated by APS kinase to 3′-phosphate APS, which is then further reduced to sulfite by 3′-phosphate APS reductase (APSR). Finally, sulfite is reduced by sulfite reductase to sulfide, which condenses with O-acetylserine by O-acetylserine lyase to form cysteine. For comparison, in dissimilatory sulfate reduction, sulfate is first catalyzed by ATP sulfurylase to APS, which is then directly reduced by APSR to sulfite. Sulfite is subsequently reduced by dissimilatory sulfite reductase to the following three possible products: trithionite (S3O62−), thiosulfate (S2O32−), or sulfide (S2−).Adenylylsulfate reductase, also called APSR, plays an important role in catalyzing APS to AMP and sulfite in the dissimilatory sulfate reduction. APSR was first partially purified and characterized from Desulfovibrio desulfuricans (32). Multiple forms of APSR in Desulfovibrio vulgaris were observed in buffers under varied conditions (1) and were found in the cytoplasm of cells (18). APSR from D. gigas was first purified by Lampreia et al. (21) and showed a molecular mass of 400 kDa comprised of α- and β-subunits, corresponding to the molecular masses of 70 kDa and 23 kDa, respectively. One flavin adenine dinucleotide (FAD) and two [4Fe-4S] clusters per APSR have been observed and characterized by electron paramagnetic resonance and Mössbauer spectroscopy. The enzyme from D. gigas has been described as an α2β complex involving one FAD and two [4Fe-4S] clusters (20). In D. vulgaris, APSR is apparently an α2β2 complex with a molecular mass of 186 kDa; only one Fe-S cluster is found in the αβ-heterodimer (31). Thus, the subunit and quaternary structures of APSR and their constitution of cofactors in terms of FAD and iron-sulfur clusters are still under debate. Only the enzyme from Archaeoglobus fulgidus has benefited from having an X-ray crystal structure. In this APSR, the functional unit has been shown to be the 1:1 αβ-heterodimer, containing two iron-sulfur clusters and one FAD in the structure (7). However, crystal packing shows that the asymmetric unit is an α2β2-heterotetramer.The catalytic mechanism of APSR can be divided into the transport of electrons and the cleavage of APS by FAD. Electron input to the FAD catalyzes the cleavage of APS, releasing AMP and sulfite. Although there have been a number of mechanisms proposed to explain the catalytic cleavage of APS to AMP and sulfite (7, 8, 13, 20, 34), many features of the postulated mechanism remain unsettled, including the proteinogenic hydrogen acceptor in the reaction, the conformational change in the enzyme induced by reduction/oxidation of the FAD cofactor, and the reasons for the observed multiple forms of APSR. The divergence between A. fulgidus and Desulfovibrio species also suggests an obvious distinction in the phylogeny of the α- and β-subunits of APSR.To clarify the difference between APSR from A. fulgidus and that from Desulfovibrio species, we have undertaken a structural study of APSR from D. gigas for comparison with the A. fulgidus enzyme. We have isolated and purified APSR directly from massive, anaerobically grown D. gigas cells for structure determination and characterization. The comparison of the structures and sequences revealing the notable differences at the C termini, activity sites, and other regions for the function is discussed. The structure of oxidized APSR from D. gigas provides much direct evidence about the subunit interactions and the role of the quaternary structure in the regulation of the catalytic mechanism.  相似文献   

17.
Hack E  Leaver CJ 《The EMBO journal》1983,2(10):1783-1789
The F1-ATPase complex has been purified from maize (Zea mays L.) mitochondria and shown to consist of five subunits with mol. wts. of 58 000 (α), 56 000 (β), 35 000 (γ), 22 000 (δ) and 8000 (ε). The α-subunit co-migrates on one- and two- dimensional isoelectric focussing-SDS polyacrylamide gels with the major polypeptide synthesised by isolated mitochondria. One-dimensional proteolytic peptide mapping and immunoprecipitation confirms that the α-subunit is a mitochondrial translation product and therefore presumably encoded in mitochondrial DNA. This contrasts with the situation in animal and fungal cells where all five subunits of the F1-ATPase are encoded by the nuclear genome and synthesised on cytosolic ribosomes.  相似文献   

18.
Xanthomonas maltophilia ATCC 17666 is an obligate aerobe that accumulates nitrite when grown on nitrate. Spectra of membranes from nitrate-grown cells exhibited b-type cytochrome peaks and A615-630 indicative of d-type cytochrome but no absorption peaks corresponding to c-type cytochromes. The nitrate reductase (NR) activity was located in the membrane fraction. Triton X-100-extracted reduced methyl viologen-NRs were purified on DE-52, hydroxylapatite, and Sephacryl S-300 columns to specific activities of 52 to 67 μmol of nitrite formed per min per mg of protein. The cytochrome-containing NRI separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis into a 135-kDa α-subunit, a 64-kDa β-subunit, and a 23-kDa γ-subunit with relative band intensities indicative of a 1:1:1 α/β/γ subunit ratio and a Mr of 222,000. The electronic spectrum of dithionite-reduced purified NR displayed peaks at 425, 528, and 558 nm, indicative of the presence of a cytochrome b, an interpretation consistent with the pyridine hemochrome spectrum formed. The cytochrome b of the NR was reduced under anaerobic conditions by menadiol and oxidized by nitrate with the production of nitrite. This NR contained 0.96 Mo, 12.5 nonheme iron, and 1 heme per 222 kDa: molybdopterin was detected with the Neurospora crassa nit-1 assay. A smaller reduced methyl viologen-NR (169 kDa), present in various concentrations in the Triton X-100 preparations, lacked a cytochrome spectrum and did not oxidize menadiol. The characteristics of the NRs and the absence of c-type cytochromes provide insights into why X. maltophilia accumulates nitrite.  相似文献   

19.
Carbohydrate active enzymes (CAZymes) are a large class of enzymes, which build and breakdown the complex carbohydrates of the cell. On the basis of their amino acid sequences they are classified in families and clans that show conserved catalytic mechanism, structure, and active site residues, but may vary in substrate specificity. We report here the identification and the detailed molecular characterization of a novel glycoside hydrolase encoded from the gene sso1353 of the hyperthermophilic archaeon Sulfolobus solfataricus. This enzyme hydrolyzes aryl β-gluco- and β-xylosides and the observation of transxylosylation reactions products demonstrates that SSO1353 operates via a retaining reaction mechanism. The catalytic nucleophile (Glu-335) was identified through trapping of the 2-deoxy-2-fluoroglucosyl enzyme intermediate and subsequent peptide mapping, while the general acid/base was identified as Asp-462 through detailed mechanistic analysis of a mutant at that position, including azide rescue experiments. SSO1353 has detectable homologs of unknown specificity among Archaea, Bacteria, and Eukarya and shows distant similarity to the non-lysosomal bile acid β-glucosidase GBA2 also known as glucocerebrosidase. On the basis of our findings we propose that SSO1353 and its homologs are classified in a new CAZy family, named GH116, which so far includes β-glucosidases (EC 3.2.1.21), β-xylosidases (EC 3.2.1.37), and glucocerebrosidases (EC 3.2.1.45) as known enzyme activities.  相似文献   

20.
Fibrinogen and β-amyloid (Aβ) peptide independently form ordered aggregates but in combination, they form disordered structures which are resistant to fibrinolytic enzymes like plasmin and cause severity in cerebral amyloid angiopathy (CAA). A novel enzyme of 31.3 kDa has been isolated from the root of the medicinal plant Aristolochia indica that showed fibrinolytic as well as fibrin-Aβ co-aggregate destabilizing properties. This enzyme is functionally distinct from plasmin. Thrombolytic action of the enzyme was demonstrated in rat model. The potency of the plant enzyme in degrading fibrin and fibrin-plasma protein (Aβ, human serum albumin, lysozyme, transthyretin and fibronectin) co-aggregates was demonstrated by atomic force microscopy, scanning electron microscopy and confocal microscopy that showed better potency of the plant enzyme as compared to plasmin. Moreover, the plant enzyme inhibited localization of the co-aggregate inside SH-SY5Y human neuroblastoma cells and also co-aggregate induced cytotoxicity. Plasmin was inefficient in this respect. In the background of limited options for fragmentation of these co-aggregates, the plant enzyme may appear as a potential proteolytic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号