首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Tuberous sclerosis complex 1 (Tsc1) is a tumor suppressor negatively regulating mammalian target of rapamycin complex 1 (mTORC1). It is reported that mice lacking Tsc1 gene in oocytes show depletion of primordial follicles, resulting in premature ovarian failure and subsequent infertility. A recent study indicated that deletion of Tsc1 in somatic cells of the reproductive tract caused infertility of female mice. However, it is not known whether specific disruption of Tsc1 in granulosa cells influences the reproductive activity of female mice. To clarify this problem, we mated Tsc1flox/flox mice with transgenic mice strain expressing cyp19-cre which exclusively expresses in granulosa cells of the ovary. Our results demonstrated that Tsc1flox/flox; cyp19-cre mutant mice were fertile, ovulating more oocytes and giving birth to more pups than control Tsc1flox/flox mice. Progressive accumulation of corpora lutea occurred in the Tsc1flox/flox; cyp19-cre mutant mice with advanced age. These phenotypes could be explained by the elevated activity of mTORC1, as indicated by increased phosphorylation of rpS6, a substrate of S6 in the Tsc1flox/flox; cyp19-cre mutant granulosa cells. In addition, rapamycin, a specific mTORC1 inhibitor, effectively rescued the phenotype caused by increased mTORC1 activity in the Tsc1cko ovaries. Our data suggest that conditional knockout of Tsc1 in granulosa cells promotes reproductive activity in mice.  相似文献   

2.
Kenerson HL  Yeh MM  Yeung RS 《PloS one》2011,6(3):e18075
Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This 'resistant' phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism.  相似文献   

3.
The serine/threonine kinase AKT is generally accepted as a promising anticancer therapeutic target. However, the relief of feedback inhibition and enhancement of other survival pathways often attenuate the anticancer effects of AKT inhibitors. These compensatory mechanisms are very complicated and remain poorly understood. In the present study, we found a novel 2-pyrimidyl-5-amidothiazole compound, DC120, as an ATP competitive AKT kinase inhibitor that suppressed proliferation and induced apoptosis in liver cancer cells both in vitro and in vivo. DC120 blocked the phosphorylation of downstream molecules in the AKT signal pathway in dose- and time-dependent manners both in vitro and in vivo. However, unexpectedly, DC120 activated mammalian target of rapamycin complex 1 (mTORC1) pathway that was suggested by increased phosphorylation of 70KD ribosomal protein S6 kinase (P70S6K) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The activated mTORC1 signal was because of increase of intracellular Ca2+ via Ca2+/calmodulin (CaM)/ signaling to human vacuolar protein sorting 34 (hVps34) upon AKT inhibition. Meanwhile, DC120 attenuated the inhibitory effect of AKT on CRAF by decreasing phosphorylation of CRAF at Ser259 and thus activated the mitogen-activated protein kinase (MAPK) pathway. The activation of the mTORC1 and MAPK pathways by DC120 was not mutually dependent, and the combination of DC120 with mTORC1 inhibitor and/or MEK inhibitor induced significant apoptosis and growth inhibition both in vitro and in vivo. Taken together, the combination of AKT, mTORC1 and/or MEK inhibitors would be a promising therapeutic strategy for liver cancer treatment.  相似文献   

4.
Hyperactive mammalian target of rapamycin (mTOR) is associated with cognitive deficits in several neurological disorders including tuberous sclerosis complex (TSC). The phosphorylation of the mRNA-binding protein FMRP reportedly depends on mTOR complex 1 (mTORC1) activity via p70 S6 kinase 1 (S6K1). Because this phosphorylation is thought to regulate the translation of messages important for synaptic plasticity, we explored whether FMRP phosphorylation of the S6K1-dependent residue (S499) is altered in TSC and states of dysregulated TSC-mTORC1 signaling. Surprisingly, we found that FMRP S499 phosphorylation was unchanged in heterozygous and conditional Tsc1 knockout mice despite significantly elevated mTORC1-S6K1 activity. Neither up- nor down-regulation of the mTORC1-S6K1 axis in vivo or in vitro had any effect on phospho-FMRP S499 levels. In addition, FMRP S499 phosphorylation was unaltered in S6K1-knockout mice. Collectively, these data strongly suggest that FMRP S499 phosphorylation is independent of mTORC1-S6K1 activity and is not altered in TSC.  相似文献   

5.
The small intestine is main site of exogenous lipid digestion and absorption, and it is important for lipid metabolic homeostasis. Cell death-inducing DNA fragmentation-factor like effector C (CIDEC) is active in lipid metabolism in tissues other than those in the intestine. We developed small intestine-specific CIDEC (SI-CIDEC-/-) knockout C57BL/6J mice by Cre/LoxP recombination to investigate the in vivo effects of intestinal CIDEC on lipid metabolism. Eight-week-old SI-CIDEC-/- mice fed a high-fat diet for 14 weeks had 15% lower body weight, 30% less body fat mass, and 79% lower liver triglycerides (TG) than wild-type (WT) mice. In addition, hepatic steatosis and fatty liver inflammation were less severe in knockout mice fed a high-fat diet (HFD) compared with wild-type mice fed an HFD. SI-CIDEC-/- mice fed an HFD diet had lower serum TG and higher fecal TG and intestinal lipase activity than wild-type mice. Mechanistic studies showed that CIDEC accelerated phosphatidic acid synthesis by interacting with 1-acylglycerol-3-phosphate-O-acyltransferase to promote TG accumulation. This study identified a new interacting protein and previously unreported CIDEC mechanisms that revealed its activity in lipid metabolism of the small intestine.  相似文献   

6.
Alcohol-related liver disease (ALD), a condition caused by alcohol overconsumption, occurs in three stages of liver injury including steatosis, hepatitis, and cirrhosis. DEP domain-containing protein 5 (DEPDC5), a component of GAP activities towards Rags 1 (GATOR1) complex, is a repressor of amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In the current study, we found that aberrant activation of mTORC1 was likely attributed to the reduction of DEPDC5 in the livers of ethanol-fed mice or ALD patients. To further define the in vivo role of DEPDC5 in ALD development, we generated Depdc5 hepatocyte-specific knockout mouse model (Depdc5-LKO) in which mTORC1 pathway was constitutively activated through loss of the inhibitory effect of GATOR1. Hepatic Depdc5 ablation leads to mild hepatomegaly and liver injury and protects against diet-induced liver steatosis. In contrast, ethanol-fed Depdc5-LKO mice developed severe hepatic steatosis and inflammation. Pharmacological intervention with Torin 1 suppressed mTORC1 activity and remarkably ameliorated ethanol-induced hepatic steatosis and inflammation in both control and Depdc5-LKO mice. The pathological effect of sustained mTORC1 activity in ALD may be attributed to the suppression of peroxisome proliferator activated receptor α (PPARα), the master regulator of fatty acid oxidation in hepatocytes, because fenofibrate (PPARα agonist) treatment reverses ethanol-induced liver steatosis and inflammation in Depdc5-LKO mice. These findings provide novel insights into the in vivo role of hepatic DEPDC5 in the development of ALD.Subject terms: Alcoholic liver disease, Experimental models of disease  相似文献   

7.
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells.  相似文献   

8.
The accumulation of triglycerides (TG) in the liver, designated hepatic steatosis, is characteristically associated with obesity and insulin resistance, but it can also develop after fasting. Here, we show that fasting-induced hepatic steatosis is under genetic control in inbred mice. After a 24-h fast, C57BL/6J mice and SJL/J mice both lost more than 20% of body weight and ∼60% of total body TG. In C57BL/6J mice, TG accumulated in liver, producing frank steatosis. In striking contrast, SJL/J mice failed to accumulate any hepatic TG even though they lost nearly as much adipose tissue mass as the C57BL/6J mice. Mice from five other inbred strains developed fasting-induced steatosis like the C57BL/6J mice. Measurements of the uptake of free fatty acids (FA) in vivo and in vitro demonstrated that SJL/J mice were protected from steatosis because their heart and skeletal muscle took up and oxidized twice as much FA as compared with C57BL/6J mice. As a result of this muscle diversion, serum-free FA and ketone bodies rose much less after fasting in SJL/J mice as compared with C57BL/6J mice. When livers of SJL/J and C57BL/6J mice were perfused with similar concentrations of FA, the livers took up and esterified similar amounts. We conclude that SJL/J mice express one or more variant genes that lead to enhanced FA uptake and oxidation in muscle, thereby sparing the liver from FA overload in the fasting state.Liver and adipose tissue coordinate metabolic responses to oscillations in nutrient availability (1, 2). In the postprandial state, the liver secretes triglycerides (TG)4 into the blood in very low-density lipoproteins (VLDL). In adipose tissue, lipoprotein lipase hydrolyzes the TG, producing fatty acids (FA) and monoglycerides that enter fat cells for reesterification and storage as TG (1). The activity of adipose tissue lipoprotein lipase is enhanced by the postprandial rise in insulin. At the same time, insulin inhibits lipolysis of stored TG in fat cells, assuring that the TG will be retained in the cells (3).Under fasting conditions, insulin falls and the inhibitory effect of insulin on adipose tissue lipolysis is diminished. The released FA enters the blood and is used as an energy source in liver, heart, and skeletal muscle. In the liver, excess FA are either re-esterified into TG for intracellular storage or oxidized and secreted as ketone bodies, which become the main energy source for the brain. In skeletal muscle during fasting, FA are oxidized to CO2 (1, 2).We (46) and others (7) previously reported that livers of mice accumulate large amounts of TG after fasting for 6–24 h. In the current study, we screened 7 strains of inbred mice to study the genetic control of fasting-induced hepatic TG accumulation. Mice from 6 of 7 strains exhibited fasting-induced fatty liver. In the unique mouse strain (SJL/J), hepatic TG failed to accumulate after a 24-h fast even though the SJL/J mice lost amounts of body weight and adipose tissue that were similar to those of the other 6 strains. To trace the mechanism for the difference in hepatic TG accumulation, we conducted extensive comparisons of SJL/J mice and C57BL/6J mice. We provide evidence that mice from both strains release comparable amounts of FA from adipose tissue into blood after fasting. In the SJL/J mice, the bulk of these FA are taken up by muscle and oxidized. In C57BL/6J mice, FA uptake in muscle is comparatively low, and the excess FA are taken up by the liver where they are converted to TG. Thus, genetic control of muscle FA uptake determines the level of hepatic TG accumulation in fasted mice.  相似文献   

9.
10.
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts.  相似文献   

11.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, with limited treatment options. AKT/mTOR and Ras/MAPK pathways are frequently deregulated in human hepatocarcinogenesis. Recently, we generated an animal model characterized by the co-expression of activated forms of AKT and Ras in the mouse liver. We found that concomitant activation of AKT/mTOR and Ras/MAPK cascades leads to rapid liver tumor development in AKT/Ras mice, mainly through mTORC1 induction. To further define the role of mTORC1 cascade in AKT/Ras induced HCC development, the mTORC1 inhibitor Rapamycin was administered to AKT/Ras mice at the time when small tumors started to emerge in the liver. Of note, Rapamycin treatment significantly delayed hepatocarcinogenesis in AKT/Ras mice. However, some microscopic lesions persisted in the livers of AKT/Ras mice despite the treatment and rapidly gave rise to HCC following Rapamycin withdrawal. Mechanistically, Rapamycin inhibited mTORC1 and mTORC2 pathways, lipogenesis and glycolysis, resulting in inhibition of proliferation in the treated livers. However, activated ERK and its downstream effectors, Mnk1 and eIF4E, were strongly upregulated in the residual lesions. Concomitant suppression of AKT/mTOR and Ras/MAPK pathways was highly detrimental for the growth of AKT/Ras cells in vitro. The study indicates the existence of a complex interplay between AKT/mTOR and Ras/MAPK pathways during hepatocarcinogenesis, with important implications for the understanding of HCC pathogenesis as well as for its prevention and treatment.  相似文献   

12.
The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation; however, inactivation of mTORC1 is essential for their differentiation and maturation. Inhibition of mTORC1 prevented preosteoblast proliferation, but enhanced their differentiation in vitro and in mice. Activation of mTORC1 by deletion of tuberous sclerosis 1 (Tsc1) in preosteoblasts produced immature woven bone in mice due to excess proliferation but impaired differentiation and maturation of the cells. The mTORC1-specific inhibitor, rapamycin, restored these in vitro and in vivo phenotypic changes. Mechanistically, mTORC1 prevented osteoblast maturation through activation of the STAT3/p63/Jagged/Notch pathway and downregulation of Runx2. Preosteoblasts with hyperactive mTORC1 reacquired the capacity to fully differentiate and maturate when subjected to inhibition of the Notch pathway. Together, these findings identified the role of mTORC1 in osteoblast formation and established that mTORC1 prevents preosteoblast differentiation and maturation through activation of the Notch pathway.  相似文献   

13.
14.
The activation of hepatic kinase mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the development of obesity-related metabolic disorders. This study investigated the metabolic sequelae of mTORC1 hyperactivation in human hepatoma cells and the lipid-regulating mechanisms of two short-chain fatty acids: 4-phenylbutyric acid (PBA) and (R)-α-lipoic acid (LA). We created three stable cell lines that exhibit low, normal, or high mTORC1 activity. mTORC1 hyperactivation induced the expression of lipogenic (DGAT1 and DGAT2) and lipoprotein assembly (MTP and APOB) genes, thereby raising cellular triacylglyceride (TG) and exacerbating secretion of apoB-containing TG-rich lipoproteins. LYS6K2, a specific inhibitor of the p70 S6 kinase branch of mTORC1 signaling, reversed these effects. PBA and LA decreased secreted TG through distinct mechanisms. PBA repressed apoB expression (both mRNA and protein) and lowered secreted TG without mitigation of mTORC1 hyperactivity or activation of AMPK. LA decreased cellular and secreted TG by attenuating mTORC1 signaling in an AMPK-independent manner. LA did not regulate apoB expression but led to the secretion of apoB-containing TG-poor lipoproteins by repressing the expression of lipogenic genes, FASN, DGAT1, and DGAT2. Our studies provide new mechanistic insight into the hypolipidemic activity of PBA and LA in the context of mTORC1 hyperactivation and suggest that the short-chain fatty acids may aid in the prevention and treatment of hypertriglyceridemia.  相似文献   

15.
The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation. Recent studies have suggested that constitutive activation of mTORC1 in normal cells could lead to malignant tumor development in several tissues. However, the mechanisms of mTORC1 hyperactivation to promote the growth and metastasis of breast or other cancers are still not well characterized. Here, using a new inducible deletion system, we show that deletion of Tsc1 in mouse primary mammary tumor cells, either before or after their transplantation, significantly increased their growth in vivo. The increase in tumor growth was completely rescued by rapamycin treatment, suggesting a major contribution from mTORC1 hyperactivation. Interestingly, glucose starvation-induced autophagy, but not amino acid starvation-induced autophagy, was increased significantly in Tsc1-null tumor cells. Further analysis of these cells also showed an increased Akt activation but no significant changes in Erk signaling. Together, these results provide insights into the mechanism by which hyperactivation of mTORC1 promotes breast cancer progression through increasing autophagy and Akt activation in vivo.  相似文献   

16.
Kwak SS  Suk J  Choi JH  Yang S  Kim JW  Sohn S  Chung JH  Hong YH  Lee DH  Ahn JK  Min H  Fu YM  Meadows GG  Joe CO 《Autophagy》2011,7(11):1323-1334
Tetrahydrobiopterin (BH4) deficiency is a genetic disorder associated with a variety of metabolic syndromes such as phenylketonuria (PKU). In this article, the signaling pathway by which BH4 deficiency inactivates mTORC1 leading to the activation of the autophagic pathway was studied utilizing BH4-deficient Spr-/- mice generated by the knockout of the gene encoding sepiapterin reductase (SR) catalyzing BH4 synthesis. We found that mTORC1 signaling was inactivated and autophagic pathway was activated in tissues from Spr-/- mice. This study demonstrates that tyrosine deficiency causes mTORC1 inactivation and subsequent activation of autophagic pathway in Spr-/- mice. Therapeutic tyrosine diet completely rescued dwarfism and mTORC1 inhibition but inactivated autophagic pathway in Spr-/- mice. Tyrosine-dependent inactivation of mTORC1 was further supported by mTORC1 inactivation in Pahenu2 mouse model lacking phenylalanine hydroxylase (Pah). NIH3T3 cells grown under the condition of tyrosine restriction exhibited autophagy induction. However, mTORC1 activation by RhebQ64L, a positive regulator of mTORC1, inactivated autophagic pathway in NIH3T3 cells under tyrosine-deficient conditions. In addition, this study first documents mTORC1 inactivation and autophagy induction in PKU patients with BH4 deficiency.Key words: tetrahydrobiopterin, autophagy, mTORC1, tyrosine, phenylalanine, phenylketonuria, Akt, AMPK  相似文献   

17.
Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtorflox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.  相似文献   

18.
19.
20.
Liver steatosis is a common health problem associated with hepatitis C virus (HCV) and an important risk factor for the development of liver fibrosis and cancer. Steatosis is caused by triglycerides (TG) accumulating in lipid droplets (LDs), cellular organelles composed of neutral lipids surrounded by a monolayer of phospholipids. The HCV nucleocapsid core localizes to the surface of LDs and induces steatosis in cultured cells and mouse livers by decreasing intracellular TG degradation (lipolysis). Here we report that core at the surface of LDs interferes with the activity of adipose triglyceride lipase (ATGL), the key lipolytic enzyme in the first step of TG breakdown. Expressing core in livers or mouse embryonic fibroblasts of ATGL−/− mice no longer decreases TG degradation as observed in LDs from wild-type mice, supporting the model that core reduces lipolysis by engaging ATGL. Core must localize at LDs to inhibit lipolysis, as ex vivo TG hydrolysis is impaired in purified LDs coated with core but not when free core is added to LDs. Coimmunoprecipitation experiments revealed that core does not directly interact with the ATGL complex but, unexpectedly, increased the interaction between ATGL and its activator CGI-58 as well as the recruitment of both proteins to LDs. These data link the anti-lipolytic activity of the HCV core protein with altered ATGL binding to CGI-58 and the enhanced association of both proteins with LDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号