首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entry of human parechovirus 1   总被引:5,自引:0,他引:5       下载免费PDF全文
Human parechovirus 1 (HPEV-1) is a prototype member of parechoviruses, a recently established picornavirus genus. Although there is preliminary evidence that HPEV-1 recognizes alpha(V) integrins as cellular receptors, our understanding of early events during HPEV-1 infection is still very limited. The aim of this study was to clarify the entry mechanisms of HPEV-1, including the attachment of the virus onto the host cell surface and subsequent internalization. In blocking experiments with monoclonal antibodies against different receptor candidates, antibodies against alpha(V) and beta(3) integrin subunits, in particular in combination, appeared to be the most efficient ones in preventing the HPEV-1 infection. To find out whether HPEV-1 uses clathrin-coated vesicles or other routes for the entry into the host cell, we carried out double-labeling experiments of virus-infected cells with anti-HPEV-1 antibodies and antibodies against known markers of the clathrin and the caveolin routes. At the early phase of infection (5 min postinfection [p.i.]) HPEV-1 colocalized with EEA1 (early endosomes), and later, after 30 min p.i., it colocalized with mannose-6-phosphate receptor (late endosomes), whereas no colocalization with caveolin-1 was observed. The data indicate that HPEV-1 utilizes the clathrin-dependent endocytic pathway for entry into the host cells. Interestingly, endocytosed HPEV-1 capsid proteins were observed in the endoplasmic reticulum and cis-Golgi network 30 to 60 min p.i. Depolymerization of microtubules with nocodazole inhibited translocation of the virus to the late endosomes but did not block HPEV-1 replication, suggesting that the RNA genome may be released early during the entry process.  相似文献   

2.
HIV-1-1进入抑制剂的研究是近年来艾滋病药物研发领域的新热点,其中最受关注的是以CCR5为靶点的新药研发。CCR5是病毒进入细胞的主要辅助受体,在HIV-1进入宿主细胞过程中起着非常重要的作用。作为CCR5的天然配体,CC类的趋化因子RANTES、MIP-1α和MIP-1β都是极具潜力的HIV-1抑制剂,特别是有关对RANTES的定向设计的研究尤为引人关注,其目的是设计出一种既有很强的抗病毒能力而又不引发炎症反应的HIV-1拮抗剂。就RANTES衍生物应用于抑制HIV进入细胞方面的研究进行了综述。  相似文献   

3.
Novel Entry Pathway of Bovine Herpesvirus 1 and 5   总被引:2,自引:0,他引:2       下载免费PDF全文
Herpesviruses enter cells by a yet poorly understood mechanism. We visualized the crucial steps of the entry pathway of bovine herpesvirus 1 (BHV-1) and BHV-5 by transmission and scanning electron microscopy, employing cryotechniques that include time monitoring, ultrarapid freezing, and freeze substitution of cultured cells inoculated with virus. A key step in the entry pathway of both BHV-1 and BHV-5 is a unique fusion of the outer phospholipid layer of the viral envelope with the inner layer of the plasma membrane and vice versa resulting in “crossing” of the fused membranes and in partial insertion of the viral envelope into the plasma membrane. The fusion area is proposed to function as an axis for driving the virus particle into an invagination that is concomitantly formed close to the fusion site. The virus particle enters the cytoplasm through the opened tip of the invagination, and the viral envelope defuses from the plasma membrane. There is strong evidence that the intact virus particle is then transported to the nuclear region.  相似文献   

4.
The interferon-induced transmembrane proteins (IFITMs) broadly inhibit virus infections, particularly at the viral entry level. However, despite this shared ability to inhibit fusion, IFITMs differ in the potency and breadth of viruses restricted, an anomaly that is not fully understood. Here, we show that differences in the range of viruses restricted by IFITM1 are regulated by a C-terminal non-canonical dibasic sorting signal KRXX that suppresses restriction of some viruses by governing its intracellular distribution. Replacing the two basic residues with alanine (KR/AA) increased restriction of jaagsiekte sheep retrovirus and 10A1 amphotropic murine leukemia virus. Deconvolution microscopy revealed an altered subcellular distribution for KR/AA, with fewer molecules in LAMP1-positive lysosomes balanced by increased levels in CD63-positive multivesicular bodies, where jaagsiekte sheep retrovirus pseudovirions are colocalized. IFITM1 binds to cellular adaptor protein complex 3 (AP-3), an association that is lost when the dibasic motif is altered. Although knockdown of AP-3 itself decreases some virus entry, expression of parental IFITM1, but not its KR/AA mutant, potentiates inhibition of viral infections in AP-3 knockdown cells. By using the substituted cysteine accessibility method, we provide evidence that IFITM1 adopts more than one membrane topology co-existing in cellular membranes. Because the C-terminal dibasic sorting signal is unique to human IFITM1, our results provide novel insight into understanding the species- and virus-specific antiviral effect of IFITMs.  相似文献   

5.
6.
The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream proinflammatory cell signaling.  相似文献   

7.
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence.  相似文献   

8.
9.
10.
Recent studies identified two main components of store-operated calcium entry (SOCE): the endoplasmic reticulum-localized Ca2+ sensor protein, STIM1, and the plasma membrane (PM)-localized Ca2+ channel, Orai1/CRACM1. In the present study, we investigated the phosphoinositide dependence of Orai1 channel activation in the PM and of STIM1 movements from the tubular to PM-adjacent endoplasmic reticulum regions during Ca2+ store depletion. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) levels were changed either with agonist stimulation or by chemically induced recruitment of a phosphoinositide 5-phosphatase domain to the PM, whereas PtdIns4P levels were decreased by inhibition or down-regulation of phosphatidylinositol 4-kinases (PI4Ks). Agonist-induced phospholipase C activation and PI4K inhibition, but not isolated PtdIns(4,5)P2 depletion, substantially reduced endogenous or STIM1/Orai1-mediated SOCE without preventing STIM1 movements toward the PM upon Ca2+ store depletion. Patch clamp analysis of cells overexpressing STIM1 and Orai1 proteins confirmed that phospholipase C activation or PI4K inhibition greatly reduced ICRAC currents. These results suggest an inositide requirement of Orai1 activation but not STIM1 movements and indicate that PtdIns4P rather than PtdIns(4,5)P2 is a likely determinant of Orai1 channel activity.Store-operated Ca2+ entry (SOCE)3 is a ubiquitous Ca2+ entry pathway that is regulated by the Ca2+ content of the endoplasmic reticulum (ER) (1). SOCE has been identified as the major route of Ca2+ entry during activation of cells of the immune system such as T cells and mast cells (2, 3), and it is also present and functionally important in other cells such as platelets (4) and developing myotubes (5). The long awaited mechanism of how the ER luminal Ca2+ content is sensed and the information transferred to the plasma membrane (PM) has been clarified recently after identification of the ER Ca2+ sensor proteins STIM1 and -2 (6, 7) and the PM Ca2+ channels Orai1, -2, and -3 (810). According to current views, a decrease in the ER Ca2+ concentration is sensed by the luminal EF-hand of the single-transmembrane STIM proteins causing their multimerization. This oligomerization occurs in the tubular ER, where it promotes the interaction of the cytoplasmic C termini of STIM with PM components and association with the PM-localized Orai channels, causing both their clustering and activation in the PM (reviewed recently in Refs. 1113). Analysis of the interacting domains within the STIM1 and Orai1 proteins suggests that the cytoplasmic domain of STIM1 is necessary and sufficient to activate Orai1 (14), whereas the latter requires its C-terminal membrane-adjacent cytoplasmic tail to be fully activated by the STIM proteins (15, 16). Both STIM1 and -2 contain a polybasic segment in their C termini, and such regions are often responsible for the PM localization of proteins (mostly of the small GTP-binding protein class) via interaction with anionic phospholipids such as phosphatidylserine or PtdIns(4,5)P2 (17). However, the role of this domain in STIM1 function(s) remains controversial. Deletion of the polybasic tail is reported to prevent PM association but not clustering of STIM1 upon ER store depletion (18). In other studies, truncated STIM1 lacking the polybasic domain shows only slightly altered activation (15) or inactivation (19) kinetics without major defects in supporting Orai1-mediated Ca2+ influx. The most recent studies identify the minimal Orai1 activation domain in STIM1 (20, 21) and find that the polybasic domain is not essential for this function but makes electrostatic interaction with classical transient receptor potential channels (22).PM phosphoinositides have been widely reported as regulators of the activity of several ion channels and transporters (23). However, only a few studies have addressed the inositide requirement of SOCE and none specifically that of the Orai1-mediated Ca2+ entry process. Sensitivity of SOCE to phosphatidylinositol 3-kinases (PI3K) inhibitors has been reported, but this required concentrations that suggested inhibition of targets other than PI3Ks, possibly myosin light chain kinase or the type-III PI4Ks (4, 2426). Here we have described studies addressing the role of PM phosphoinositides in STIM1 movements as well as in Orai1 channel gating. Our results show that phosphoinositides do not have a major role in the prominent reorganization of STIM1 after Ca2+ store depletion but suggest a function of PtdIns4P rather than PtdIns(4,5)P2 in supporting the Orai1-mediated Ca2+ entry process.  相似文献   

11.
12.
Herpes simplex virus type 1 (HSV-1) has the ability to enter many different hosts and cell types by several strategies. This highly prevalent alphaherpesvirus can enter target cells using different receptors and different pathways: fusion at a neutral pH, low-pH-dependent and low-pH-independent endocytosis. Several cell receptors for viral entry have been described, but several observations suggest that more receptors for HSV-1 might exist. In this work, we propose a novel role for the proteolipid protein (PLP) in HSV-1 entry into the human oligodendrocytic cell line HOG. Cells transfected with PLP-EGFP showed an increase in susceptibility to HSV-1. Furthermore, the infection of HOG and HOG-PLP transfected cells with the R120vGF virus–unable to replicate in ICP4-defficient cells- showed an increase in viral signal in HOG-PLP, suggesting a PLP involvement in viral entry. In addition, a mouse monoclonal antibody against PLP drastically inhibited HSV-1 entry into HOG cells. PLP and virions colocalized in confocal immunofluorescence images, and in electron microscopy images, which suggest that PLP acts at the site of entry into HOG cells. Taken together these results suggest that PLP may be involved in HSV-1 entry in human oligodendrocytic cells.  相似文献   

13.
HIV-1 can be transmitted as cell-free virus or via cell-to-cell contacts. Cell-to-cell transmission between CD4+ T cells is the more efficient mode of transmission and is predominant in lymphoid tissue, where the majority of virus resides. Yet the cellular mechanisms underlying productive cell-to-cell transmission in uninfected target cells are unclear. Although it has been demonstrated that target cells can take up virus via endocytosis, definitive links between this process and productive infection remain undefined, and this route of transmission has been proposed to be nonproductive. Here, we report that productive cell-to-cell transmission can occur via endocytosis in a dynamin-dependent manner and is sensitive to clathrin-associated antagonists. These data were obtained in a number of CD4+ T-cell lines and in primary CD4+ T cells, using both CXCR4- and CCR5-tropic virus. However, we also found that HIV-1 demonstrated flexibility in its use of such endocytic pathways as certain allogeneic transmissions were seen to occur in a dynamin-dependent manner but were insensitive to clathrin-associated antagonists. Also, depleting cells of the clathrin accessory protein AP180 led to a viral uptake defect associated with enhanced infection. Collectively, these data demonstrate that endosomal uptake of HIV-1 during cell-to-cell transmission leads to productive infection, but they are also indicative of a flexible model of viral entry during cell-to-cell transmission, in which the virus can alter its entry route according to the pressures that it encounters.  相似文献   

14.
15.
16.
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.  相似文献   

17.
18.
19.
20.
Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the required HSV glycoproteins, gB, gD, and gH-gL, may be sufficient for entry regardless of entry route taken. This may be distinct from entry mechanisms employed by other human herpesviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号