首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lanthanide gadolinium (Gd(3+)) blocks Ca(V)1.2 channels at the selectivity filter. Here we investigated whether Gd(3+) block interferes with Ca(2+)-dependent inactivation, which requires Ca(2+) entry through the same site. Using brief pulses to 200 mV that relieve Gd(3+) block but not inactivation, we monitored how the proportions of open and open-blocked channels change during inactivation. We found that blocked channels inactivate much less. This is expected for Gd(3+) block of the Ca(2+) influx that enhances inactivation. However, we also found that the extent of Gd(3+) block did not change when inactivation was reduced by abolition of Ca(2+)/calmodulin interaction, showing that Gd(3+) does not block the inactivated channel. Thus, Gd(3+) block and inactivation are mutually exclusive, suggesting action at a common site. These observations suggest that inactivation causes a change at the selectivity filter that either hides the Gd(3+) site or reduces its affinity, or that Ca(2+) occupies the binding site at the selectivity filter in inactivated channels. The latter possibility is supported by previous findings that the EEQE mutation of the selectivity EEEE locus is void of Ca(2+)-dependent inactivation (Zong Z.Q., J.Y. Zhou, and T. Tanabe. 1994. Biochem. Biophys. Res. Commun. 201:1117-11123), and that Ca(2+)-inactivated channels conduct Na(+) when Ca(2+) is removed from the extracellular medium (Babich O., D. Isaev, and R. Shirokov. 2005. J. Physiol. 565:709-717). Based on these results, we propose that inactivation increases affinity of the selectivity filter for Ca(2+) so that Ca(2+) ion blocks the pore. A minimal model, in which the inactivation "gate" is an increase in affinity of the selectivity filter for permeating ions, successfully simulates the characteristic U-shaped voltage dependence of inactivation in Ca(2+).  相似文献   

3.
Voltage-gated Cav2.1 Ca2+ channels undergo dual modulation by Ca2+, Ca2+-dependent inactivation (CDI), and Ca2+-dependent facilitation (CDF), which can influence synaptic plasticity in the nervous system. Although the molecular determinants controlling CDI and CDF have been the focus of intense research, little is known about the factors regulating these processes in neurons. Here, we show that calretinin (CR), a Ca2+-binding protein highly expressed in subpopulations of neurons in the brain, inhibits CDI and enhances CDF by binding directly to α12.1. Screening of a phage display library with CR as bait revealed a highly basic CR-binding domain (CRB) present in multiple copies in the cytoplasmic linker between domains II and III of α12.1. In pulldown assays, CR binding to fusion proteins containing these CRBs was largely Ca2+-dependent. α12.1 coimmunoprecipitated with CR antibodies from transfected cells and mouse cerebellum, which confirmed the existence of CR-Cav2.1 complexes in vitro and in vivo. In HEK293T cells, CR significantly decreased Cav2.1 CDI and increased CDF. CR binding to α12.1 was required for these effects, because they were not observed upon substitution of the II-III linker of α12.1 with that from the Cav1.2 α1 subunit (α11.2), which lacks the CRBs. In addition, coexpression of a protein containing the CRBs blocked the modulatory action of CR, most likely by competing with CR for interactions with α12.1. Our findings highlight an unexpected role for CR in directly modulating effectors such as Cav2.1, which may have major consequences for Ca2+ signaling and neuronal excitability.  相似文献   

4.
5.
6.
Activity of voltage-gated Cav1.3 L-type Ca2+ channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V.  相似文献   

7.
Loss of neuronal protein stargazin (γ2) is associated with recurrent epileptic seizures and ataxia in mice. Initially, due to homology to the skeletal muscle calcium channel γ1 subunit, stargazin and other family members (γ3–8) were classified as γ subunits of neuronal voltage-gated calcium channels (such as CaV2.1-CaV2.3). Here, we report that stargazin interferes with G protein modulation of CaV2.2 (N-type) channels expressed in Xenopus oocytes. Stargazin counteracted the Gβγ-induced inhibition of CaV2.2 channel currents, caused either by coexpression of the Gβγ dimer or by activation of a G protein-coupled receptor. Expression of high doses of Gβγ overcame the effects of stargazin. High affinity Gβγ scavenger proteins m-cβARK and m-phosducin produced effects similar to stargazin. The effects of stargazin and m-cβARK were not additive, suggesting a common mechanism of action, and generally independent of the presence of the CaVβ3 subunit. However, in some cases, coexpression of CaVβ3 blunted the modulation by stargazin. Finally, the Gβγ-opposing action of stargazin was not unique to CaV2.2, as stargazin also inhibited the Gβγ-mediated activation of the G protein-activated K+ channel. Purified cytosolic C-terminal part of stargazin bound Gβγ in vitro. Our results suggest that the regulation by stargazin of biophysical properties of CaV2.2 are not exerted by direct modulation of the channel but via a Gβγ-dependent mechanism.  相似文献   

8.
We have cloned the squid neuronal Na+–Ca2+ exchanger, NCX-SQ1, expressed it in Xenopus oocytes, and characterized its regulatory and ion transport properties in giant excised membrane patches. The squid exchanger shows 58% identity with the canine Na+–Ca2+ exchanger (NCX1.1). Regions determined to be of functional importance in NCX1 are well conserved. Unique among exchanger sequences to date, NCX-SQ1 has a potential protein kinase C phosphorylation site (threonine 184) between transmembrane segments 3 and 4 and a tyrosine kinase site in the Ca2+ binding region (tyrosine 462). There is a deletion of 47 amino acids in the large intracellular loop of NCX-SQ1 in comparison with NCX1. Similar to NCX1, expression of NCX-SQ1 in Xenopus oocytes induced cytoplasmic Na+-dependent 45Ca2+ uptake; the uptake was inhibited by injection of Ca2+ chelators. In giant excised membrane patches, the NCX-SQ1 outward exchange current showed Na+-dependent inactivation, secondary activation by cytoplasmic Ca2+, and activation by chymotrypsin. The NCX-SQ1 exchange current was strongly stimulated by both ATP and the ATP-thioester, ATPγS, in the presence of F (0.2 mM) and vanadate (50 μM), and both effects reversed on application of a phosphatidylinositol-4′,5′-bisphosphate antibody. NCX1 current was stimulated by ATP, but not by ATPγS. Like NCX1 current, NCX-SQ1 current was strongly stimulated by phosphatidylinositol-4′,5′-bisphosphate liposomes. In contrast to results in squid axon, NCX-SQ1 was not stimulated by phosphoarginine (5–10 mM). After chymotrypsin treatment, both the outward and inward NCX-SQ1 exchange currents were more strongly voltage dependent than NCX1 currents. Ion concentration jump experiments were performed to estimate the relative electrogenicity of Na+ and Ca2+ transport reactions. Outward current transients associated with Na+ extrusion were much smaller for NCX-SQ1 than NCX1, and inward current transients associated with Ca2+ extrusion were much larger. For NCX-SQ1, charge movements of Ca2+ transport could be defined in voltage jump experiments with a low cytoplasmic Ca2+ (2 μM) in the presence of high extracellular Ca2+ (4 mM). The rates of charge movements showed “U”-shaped dependence on voltage, and the slopes of both charge–voltage and rate–voltage relations (1,600 s−1 at 0 mV) indicated an apparent valency of −0.6 charges for the underlying reaction. Evidently, more negative charge moves into the membrane field in NCX-SQ1 than in NCX1 when ions are occluded into binding sites.  相似文献   

9.
PH Hsu  SC Miaw  CC Chuang  PY Chang  SJ Fu  GM Jow  MM Chiu  CJ Jeng 《PloS one》2012,7(7):e41203
The ether-à-go-go (Eag) potassium (K(+)) channel belongs to the superfamily of voltage-gated K(+) channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1)-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+) currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+) channel in neurons.  相似文献   

10.

Background

Beclin 1 plays an essential role in autophagy; however, the regulation of Beclin 1 expression remains largely unexplored. An earlier ChIP-on-chip study suggested Beclin 1 could be an E2F target. Previously, we also reported that 14-3-3τ regulates E2F1 stability, and is required for the expression of several E2F1 target genes. 14-3-3 proteins mediate many cellular signaling processes, but its role in autophagy has not been investigated. We hypothesize that 14-3-3τ could regulate Beclin 1 expression through E2F1 and thus regulate autophagy.

Methods and Findings

Using the RNAi technique we demonstrate a novel role for one of 14-3-3 isoforms, 14-3-3τ, in the regulation of Beclin 1 expression and autophagy. Depletion of 14-3-3τ inhibits the expression of Beclin 1 in many different cell lines; whereas, upregulation of 14-3-3τ induces Beclin 1. The regulation is physiologically relevant as an extracellular matrix protein tenascin-C, a known 14-3-3τ inducer, can induce Beclin 1 through 14-3-3τ. Moreover, rapamycin-induced, serum free-induced and amino acid starvation-induced autophagy depends on 14-3-3τ. We also show the expression of Beclin 1 depends on E2F, and E2F can transactivate the Beclin 1 promoter in a promoter reporter assay. Upregulation of Beclin 1 by 14-3-3τ requires E2F1. Depletion of E2F1, like 14-3-3τ, also inhibits autophagy.

Conclusion

Taken together, this study uncovers a role for 14-3-3τ in Beclin 1 and autophagy regulation probably through regulation of E2F1.  相似文献   

11.
12.
In the nervous system, voltage-gated Ca2+ channels regulate numerous processes critical to neuronal function including secretion of neurotransmitters, initiation of action potentials in dendritic regions of some neurons, growth cone elongation, and gene expression. Because of the critical role which Ca2+ channels play in signaling processes within the nervous system, disruption of their function will lead to profound disturbances in neuronal function. Voltage-gated Ca2+ channels are the targets of several relatively rare neurological or neuromuscular diseases resulting from spontaneously-occurring mutations in genes encoding for parts of the channel proteins, or from autoimmune attack on the channel protein responses. Mutations in CACNAIA, which encodes for the alpha1A subunit of P/Q-type Ca2+ channels, lead to symptoms seen in familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6. Conversely, autoimmune attack on Ca2+ channels at motor axon terminals causes peripheral cholinergic nerve dysfunction observed in Lambert-Eaton Myasthenic Syndrome (LEMS), the best studied of the disorders targeting voltage-gated Ca2+ channels. LEMS is characterized by decreased evoked quantal release of acetylcholine (ACh) and disruption of the presynaptic active zones, the sites at which ACh is thought to be released. LEMS is generally believed to be due to circulating antibodies directed specifically at the Ca2+ channels located at or near the active zone of motor nerve terminals (P/Q-type) and hence involved in the release of ACh. However, other presynaptic proteins have also been postulated to be targets of the autoantibodies. LEMS has a high degree of coincidence (approximately 60%) with small cell lung cancer; the remaining 40% of patients with LEMS have no detectable tumor. Diagnosis of LEMS relies on characteristic patterns of electromyographic changes; these changes are observable at neuromuscular junctions of muscle biopsies from patients with LEMS. In the majority of LEMS patients, those having detectable tumor, the disease is thought to occur as a result of immune response directed initially against voltage-gated Ca2+ channels found on the lung tumor cells. In these patients, effective treatment of the underlying tumor generally causes marked improvement of the symptoms of LEMS as well. Animal models of LEMS can be generated by chronic administration of plasma, serum or immunoglobulin G to mice. These models have helped dramatically in our understanding of the pathogenesis of LEMS. This "passive transfer" model mimics the electrophysiological and ultrastructural findings seen in muscle biopsies of patients with LEMS. In this model, we have shown that the reduction in amplitude of Ca2+ currents through P/Q-type channels is followed by "unmasking" of an L-type Ca2+ current not normally found at the motor nerve terminal which participates in release of ACh from terminals of mice treated with plasma from patients with LEMS. It is unclear what mechanisms underlie the development of this novel L-type Ca2+ current involved in release of ACh at motor nerve terminals during passive transfer of LEMS.  相似文献   

13.
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys49 and Lys120, is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys49/Lys120 deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser112 and Thr642, respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser112/Thr642 phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.  相似文献   

14.
The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels.  相似文献   

15.
The molecular conformation of (1→3)-α-D-glucan tribenzoate (TBG) was studied by X-ray diffraction measurements coupled with a conformational analysis. Although the fiber pattern obtained was of very low crystallinity, the presence of a meridional reflection at the 5th layer line indicated that the TBG molecule took a five-fold helical conformation with a 19.63 A fiber repeat. A conformational analysis on the five-fold helix, which was done by calculating van der Waals’ repulsion energy between non-bonded atoms comprising the TBG chain, suggested that the most preferable energy-based conformation was –5/1, a left-handed five-fold helix.  相似文献   

16.
Phosphorylation and SUMOylation of the kainate receptor (KAR) subunit GluK2 have been shown to regulate KAR surface expression, trafficking and synaptic plasticity. In addition, our previous study has shown that a phosphorylation-dependent interaction of 14–3–3τ and GluK2a-containing receptors contributes to the slow decay kinetics of native KAR-EPSCs. However, it is unknown whether SUMOylation participates in the regulation of the interaction between 14–3–3τ and GluK2a-containing receptors. Here we report that SUMOylation of PKC, but not GluK2, represses the binding of 14–3–3τ to GluK2a via decreasing the phosphorylation level of GluK2a. These results suggest that PKC SUMOylation is an important regulator of the 14–3–3 and GluK2a protein complex and may contribute to regulate the decay kinetics of KAR-EPSCs.  相似文献   

17.
Abstract

Reaction of methyl 2-deoxy-2-C-(3-bromoacetoxypropyl)-α-D-arabinofuranosides, prepared from methyl 2,3-anhydro-α-D-ribofuranoside, with oligodeoxyribonucleotide (21mer) in acetonitrile-H2O (pH 7) and subsequent treatment with piperidine resulted in the cleavage of the nucleotide chain at the position G, A, and C.  相似文献   

18.
14-3-3β has been demonstrated to possess the oncogenic potential, and its increased expression has been detected in multiple types of carcinomas. However, majority of previous studies focused on the role of 14-3-3β in tumor cell proliferation and apoptosis, leaving much to be elucidated about its function in tumor cell invasion and metastasis. Hence, the present study aimed to investigate the role of 14-3-3β in the invasion of hepatocellular carcinoma (HCC) cells and the implications in the prognosis of HCC patients. We first examined the expression of 14-3-3β in the primary tumors of HCC patients with or without portal vein tumor thrombus (PVTT), and found that 14-3-3β expression was higher in the primary tumors with PVTT, and the level was even higher in the PVTTs. Kaplan-Meier curves and multivariate analysis revealed that high expression of 14-3-3β was associated with overall survival (OS) and time to recurrence (TTR) of HCC patients. In addition, ectopic expression of 14-3-3β in HCC cell lines led to enhanced migration ability and invasiveness, as well as up-regulation of matrix metalloproteinase 2 and 9, which could be suppressed by inhibiting the activation of Akt and nuclear factor-κB (NF-κB) signaling. Furthermore, we identified a correlated elevation of 14-3-3β and p-Akt in the primary tumors of HCC patients, and showed that a combinatory detection of 14-3-3β and p-Akt could better predict post-surgical outcome of HCC patients.  相似文献   

19.
Voltage-dependent Ca(2+) channels are heteromultimers of Ca(V)α(1) (pore), Ca(V)β- and Ca(V)α(2)δ-subunits. The stoichiometry of this complex, and whether it is dynamically regulated in intact cells, remains controversial. Fortunately, Ca(V)β-isoforms affect gating differentially, and we chose two extremes (Ca(V)β(1a) and Ca(V)β(2b)) regarding single-channel open probability to address this question. HEK293α(1C) cells expressing the Ca(V)1.2 subunit were transiently transfected with Ca(V)α(2)δ1 alone or with Ca(V)β(1a), Ca(V)β(2b), or (2:1 or 1:1 plasmid ratio) combinations. Both Ca(V)β-subunits increased whole-cell current and shifted the voltage dependence of activation and inactivation to hyperpolarization. Time-dependent inactivation was accelerated by Ca(V)β(1a)-subunits but not by Ca(V)β(2b)-subunits. Mixtures induced intermediate phenotypes. Single channels sometimes switched between periods of low and high open probability. To validate such slow gating behavior, data were segmented in clusters of statistically similar open probability. With Ca(V)β(1a)-subunits alone, channels mostly stayed in clusters (or regimes of alike clusters) of low open probability. Increasing Ca(V)β(2b)-subunits (co-)expressed (1:2, 1:1 ratio or alone) progressively enhanced the frequency and total duration of high open probability clusters and regimes. Our analysis was validated by the inactivation behavior of segmented ensemble averages. Hence, a phenotype consistent with mutually exclusive and dynamically competing binding of different Ca(V)β-subunits is demonstrated in intact cells.  相似文献   

20.
Abstract

Synthesis of 1-(2, 3, 4-tri-0-acetyl-α-L-rhamnopyranosyl) uracil (3), 1-(α-L-rhamnopyranosyl) uracil (4), 1-(2, 3-0-isopropylidene-α-L-rhamnosyl) uracil (5), and 1-(2, 3-0-isopropylidene-4-keto-α-L-rhamnopyranosyl) uracil (6) are reported. Oxidation of (5) to (6) was effected using pyridinium chlorochromate in presence of molecular sieves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号