首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural abundance of stable carbon isotopes measured in bacterial nucleic acids extracted from estuarine bacterial concentrates was used to trace sources of organic matter for bacteria in aquatic environments. The stable carbon isotope ratios of Pseudomonas aeruginosa and nucleic acids extracted from cultures resembled those of the carbon source on which bacteria were grown. The carbon isotope discrimination between the substrate and total cell carbon from bacterial cultures averaged 2.3% +/- 0.6% (n = 13). Furthermore, the isotope discrimination between the substrate and nucleic acids extracted from bacterial cultures was 2.4% +/- 0.4% (n = 10), not significantly different from the discrimination between bacteria and the substrate. Estuarine water samples were prefiltered through 1-micron-pore-size cartridge filters. Bacterium-sized particles in the filtrates were concentrated with tangential-flow filtration and centrifugation, and nucleic acids were then extracted from these concentrates. Hybridization with 16S rRNA probes showed that approximately 90% of the nucleic acids extracted on two sample dates were of eubacterial origin. Bacteria and nucleic acids from incubation experiments using estuarine water samples enriched with dissolved organic matter from Spartina alterniflora and Cyclotella caspia had stable carbon isotope values similar to those of the substrate sources. In a survey that compared diverse estuarine environments, stable carbon isotopes of bacteria grown in incubation experiments ranged from -31.9 to -20.5%. The range in isotope values of nucleic acids extracted from indigenous bacteria from the same waters was similar, -27.9 to -20.2%. Generally, the lack of isotope discrimination between bacteria and nucleic acids that was noted in the laboratory was observed in the field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.  相似文献   

3.
Acetate is the most important intermediate in anaerobic degradation of organic matter. The carbon isotope effects associated with the oxidation of acetate (ɛac) were examined for four acetotrophic sulfur reducers, Desulfuromonas acetoxidans, Desulfuromonas thiophila, Desulfurella acetivorans , and Hippea maritima . During the consumption of acetate and sulfur, acetate was enriched in 13C by 11.5 and 11.2‰ in Desulfuromonas acetoxidans and Desulfuromonas thiophila , respectively. By contrast, isotope fractionation in D. acetivorans and H. maritima resulted in isotope enrichment factors of ɛac=−6.3‰ and −8.4‰, respectively. These sulfur-reducing bacteria all metabolize acetate via the tricarboxylic acid cycle, but have different mechanisms for the initial activation of acetate. In Desulfuromonas acetoxidans , acetyl-CoA is formed by succinyl-CoA : acetate-CoA-transferase, and in D. acetivorans by acetate kinase and phosphate acetyltransferase. Hence, values of ɛac seem to be characteristic for the type of activation of acetate to acetyl-CoA in acetotrophic sulfur reducers. Summarizing ɛac-values in anaerobic acetotrophic microorganisms, it appears that isotope fractionation depends on the mechanism of acetate activation to acetyl-CoA, on the key enzyme of the acetate dissimilation pathway, and on the bioavailability of acetate, which all have to be considered when using δ13C of acetate in environmental samples for diagnosis of the involved microbial populations.  相似文献   

4.
Stable carbon isotope fractionation during dichloromethane (DCM) degradation by methylotrophic bacteria was investigated under aerobic and nitrate-reducing conditions. The strains studied comprise several Hyphomicrobium strains, Methylobacterium, Methylopila, Methylophilus and Methylorhabdus spp. that are considered to degrade DCM by a glutathione (GSH)-dependent dehalogenase enzyme system in the initial step. The stable carbon isotope fractionation factors (alphaC) of the strains varied under aerobic conditions between 1.043 and 1.071 and under nitrate-reducing conditions between 1.048 and 1.065. Comparison of isotope fractionation under aerobic and nitrate-reducing conditions by individual strains revealed only minor to no differences. The variability in isotope fractionation among strains was found to be related to the polymorphism of the functional genes encoding the DCM dehalogenase.  相似文献   

5.
We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the delta13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with Deltadelta13C(FA - biomass) of -4 to -17 per thousand; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The delta13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the Deltadelta13C(FA - substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA delta13C values can be useful for interpreting carbon utilization by SRB in natural environments.  相似文献   

6.
1.  The δ13C and δ15N signatures of zooplankton vary with dissolved organic carbon (DOC), but inconsistent and limited taxonomic resolution of previous studies have masked differences that may exist among orders, genera or species and are attributable to dietary and/or habitat differences. Here we investigate differences among the isotopic signatures of five zooplankton taxa ( Daphnia , Holopedium , large Calanoida, small Calanoida and Cyclopoida) in Precambrian shield lakes with a sixfold range of DOC concentration.
2.  δ13C signatures of Daphnia , small calanoids and large calanoids became more depleted with increasing lake DOC, whereas Holopedium and cyclopoid δ13C became enriched with increasing DOC concentration.
3.  The variability of δ13C and δ15N isotopic signatures among zooplankton groups was reduced in high-DOC, compared to low-DOC lakes, especially for δ13C. Differences in δ13C and POM-corrected δ15N accounted for up to 33.7% and 19.5% of the variance, respectively, among lakes of varying DOC concentration.
4.  The narrow range of signatures found in higher DOC lakes suggests that different taxa have similar food sources and/or habitats. In contrast, the wide range of signatures in low-DOC lakes suggests that different taxa are exploiting different food sources and/or habitats. Together with the variable trends in zooplankton isotopic signatures along our DOC gradient, these results suggest that food web dynamics within the zooplankton community of temperate lakes will change as climate and lake DOC concentrations change.  相似文献   

7.
It is a nutritional challenge for nectar-feeding insects to meet the amino acid requirements of oviposition. Here we investigate whether egg amino acids derive from larval diet or are synthesized from nectar sugar in four species of butterfly: Colias eurytheme, Speyeria mormonia, Euphydryas chalcedona, and Heliconius charitonia. These species exhibit a range of life history and differ in degree of shared phylogeny. We use 13C differences among plants to identify dietary sources of amino acid carbon, and we measure amino acid 13C using compound-specific stable isotope analysis. Egg essential amino acids derived solely from the larval diet, with no evidence for metabolic carbon remodeling. Carbon in nonessential amino acids from eggs derived primarily from nectar sugars, with consistent variation in amino acid turnover. There was no relationship between the nonessential amino acids of eggs and host plants, demonstrating extensive metabolic remodeling. Differences between species in carbon turnover were reflected at the molecular level, particularly by glutamate and aspartate. Essential amino acid 13C varied in a highly consistent pattern among larval host plants, reflecting a common isotopic "fingerprint" associated with plant biosynthesis. These data demonstrate conservative patterns of amino acid metabolism among Lepidoptera and the power of molecular stable isotope analyses for evaluating nutrient metabolism in situ.  相似文献   

8.
Abstract. In the marine environment, the range of values of carbon isotope fractionation between particulate tissue of phytoplankton and inorganic carbon can be more than 20‰ (− 35‰ < δ13C < − 14‰). This review considers the influence of seawater temperature, lipid content of phytoplanktonic cells, kinetic fractionation, and carbon pathway on δ13C values observed at sea.
In order to study the contribution of carboxylases (RUBISCO and the β-carboxylases phosphoenolpyruvate carboxylase, phosphoenoplpyruvate carboxykinase and pyruvate carboxylase) to variations of particulate δ13C values at sea, we present results obtained simultenously on carboxylase activities and δ13C in various environmental conditions. The lowest δ13C values are clearly associated with predominance of ribulose-1.5-bisphosphate carboxylase activity, but it was more difficult to explain the high δ13C values. Different hypotheses are discussed.  相似文献   

9.
1. We hypothesized that changes in bacterial colony growth would be correlated to shifts in riparian vegetation (via leachate quality) along a river continuum of a south-eastern, blackwater stream (U.S.A.). Spatially, we expected bacterial assemblages from downstream reaches to utilize more sources of leachate and at higher concentrations than bacteria collected from headwater reaches. Temporally, we predicted higher colony growth on leachate from autumn-shed (senescent) leaves compared with leachate from fresh, green leaves.
2. We examined spatial differences in assemblage growth by culturing bacteria sampled along the stream continuum on gradient plates using leachates from four common riparian species ( Taxodium distichum , Carya spp., Acer rubrum and Decumaria barbara ). Bacteria from the lowest site were able to use all sources provided and at all concentrations, whereas bacteria from upper reaches could not. Colony density was correlated to relative leachate concentration at all sites along the continuum.
3. Leachates from fresh and senescent A. rubrum leaves were used to determine temporal differences. Winter assemblages of bacteria could not grow on fresh leaf leachate at any concentration but grew well on autumn leaf leachate at higher concentrations. Differential response of bacterial assemblages indicated local adaptation to potential sources of dissolved organic matter.
4. Growth response of stream bacterial colonies appeared to be dependent on the timing and source of leachate as well as on sources of dissolved organic carbon from further upstream. Growth of bacterial assemblages exhibited 'generalist' characteristics in headwater reaches and 'specialist' characteristics at the mouth of our study stream drainage. Thus, our findings lend support to the argument that variable resource habitats favour a small, generalist assemblage, while environments with stable resource supplies allow for highly diverse assemblages dominated by specialists.  相似文献   

10.
1. Food sources and trophic structure of the macroinvertebrate community along a longitudinal gradient were examined in a glacier stream of the Swiss Alps (Val Roseg). Analysis of multiple stable isotopes (δ13C and δ15N) and measurement of C : N ratios were used to differentiate between allochthonous and autochthonous organic matter.
2. Although isotopic signatures of algae varied widely among sites and dates, it was possible to discriminate between allochthonous and autochthonous food sources using a site-specific approach.
3. Dominant food sources of herbivorous invertebrates in all main channel sites were epilithic diatoms and the filamentous gold alga Hydrurus foetidus . Allochthonous organic matter was of some importance only in a groundwater-fed stream close to the floodplain margin.
4. Seasonal changes in the δ13C signature of the macroinvertebrates corresponded with seasonal changes in δ13C of the gold alga H. foetidus . This indicated that the energy base remains autochthonous throughout the year.
5. Because of limited food sources, feeding plasticity of the invertebrate community was high. Both grazers and shredders fed predominantly on algae, whereas gatherer-collectors seemed to be omnivorous.
6. The overall enrichment of δ15N was 2.25‰ ( r 2=0.99) per trophic level. On a gradient from the glacier site to a downstream forested site trophic enrichment was constant but variation in δ15N within trophic levels decreased.  相似文献   

11.
1. We hypothesized that changes in bacterial colony growth would be correlated to shifts in riparian vegetation (via leachate quality) along a river continuum of a south-eastern, blackwater stream (U.S.A.). Spatially, we expected bacterial assemblages from downstream reaches to utilize more sources of leachate and at higher concentrations than bacteria collected from headwater reaches. Temporally, we predicted higher colony growth on leachate from autumn-shed (senescent) leaves compared with leachate from fresh, green leaves.
2. We examined spatial differences in assemblage growth by culturing bacteria sampled along the stream continuum on gradient plates using leachates from four common riparian species ( Taxodium distichum , Carya spp., Acer rubrum and Decumaria barbara ). Bacteria from the lowest site were able to use all sources provided and at all concentrations, whereas bacteria from upper reaches could not. Colony density was correlated to relative leachate concentration at all sites along the continuum.
3. Leachates from fresh and senescent A. rubrum leaves were used to determine temporal differences. Winter assemblages of bacteria could not grow on fresh leaf leachate at any concentration but grew well on autumn leaf leachate at higher concentrations. Differential response of bacterial assemblages indicated local adaptation to potential sources of dissolved organic matter.
4. Growth response of stream bacterial colonies appeared to be dependent on the timing and source of leachate as well as on sources of dissolved organic carbon from further upstream. Growth of bacterial assemblages exhibited 'generalist' characteristics in headwater reaches and 'specialist' characteristics at the mouth of our study stream drainage. Thus, our findings lend support to the argument that variable resource habitats favour a small, generalist assemblage, while environments with stable resource supplies allow for highly diverse assemblages dominated by specialists.  相似文献   

12.
《Palaeoworld》2022,31(1):169-184
The stable carbon isotope composition of the structural carbonate derived from animal bone hydroxylapatite (δ13CB-HA) could record an animal’s diet. These records provide critical evidence for different paleontological disciplines, e.g., paleodiet analyses, and paleoclimate reconstructions. Compared to those of other body tissues, such as bone collagen or teeth enamel hydroxylapatite, δ13CB-HA values record information on the whole diet of an animal in its last years. δ13CB-HA can be applied to fossil animals of various body sizes. The δ13C analytical instruments available only require that prepared bone samples be approximately 2–5 mg for precise measurement, allowing δ13CB-HA analysis to be feasible on most vertebrate fossils without destructive sampling, especially on small mammals or birds whose teeth are not large enough for sampling or are lost. Moreover, δ13CB-HA can be used from different times or under less than ideal burial environments. For fossils dating back to Devonian or buried in hot and humid regions, dietary information has been completely lost in bone collagen during post-depositional processes but still remained in the δ13CB-HA values because hydroxylapatite is less influenced by diagenetic effects after deposition. In addition, systematic methods such as X-ray diffraction and Fourier transform infrared spectroscopy have been developed to qualitatively or semiquantitatively assess the influence of diagenesis on bone hydroxylapatite to ensure the credibility of the δ13CB-HA values. With the above merits, δ13CB-HA analysis is therefore becoming an increasingly important method in paleodiet-related research. Currently, applications of the δ13CB-HA method on fossil animals are primarily focused on two aspects, namely, paleodietary reconstruction of fossil animals with uncertain diets and paleoenvironmental reconstruction based on the δ13CB-HA values of fossil herbivores. The published researches, combined with our new results from early birds, demonstrate the considerable significance of the δ13CB-HA method in paleontological and paleoenvironmental research. Notably, the δ13CB-HA-based paleodietary analysis of early vertebrates, especially the large number of small birds or mammals discovered in the past decades would be an important work in the near future.  相似文献   

13.
14.
In this report, the characterization of labeled oligonucleotides was discussed from the view points of base sequence analysis and structural analysis of nucleic acids in solution. Oligonucleotides site specifically spin labeled with TEMPO and fluorescent labeled with fluorescein were prepared and used for those analyses. The changes of ESR lines and rotational correlation time (tau) of the spin labeled oligonucleotide (S-probe) were dependent on the base sequence of S-probe, diastereoisomers, and the manner of hybridization. These results suggest that the conformation of the hybrid largely affected the local mobility of TEMPO and that tau value of S-probe reflected the local structure of the hybrid. When S-probe which was complementary to a single strand region of 5S RNA, was mixed with 5S RNA, tau value largely changed, indicating that the S-probe could form hybrid with 5S RNA in solution. Similar results were also obtained in the fluorescence depolarization analysis using fluorescent labeled oligonucleotide (F-probe). These results suggest that S-probe and F-probe are capable for the recognition of the secondary structure of 5S RNA in solution and useful for the analysis of the secondary structure of other nucleic acids in solution.  相似文献   

15.
16.
Metabolic pathway flux is a fundamental element of biological activity, which can be quantified using a variety of mass spectrometric techniques to monitor incorporation of stable isotope-labelled substrates into metabolic products. This article contrasts developments in electrospray ionisation mass spectrometry (ESI-MS) for the measurement of lipid metabolism with more established gas chromatography mass spectrometry and isotope ratio mass spectrometry methodologies. ESI-MS combined with diagnostic tandem MS/MS scans permits the sensitive and specific analysis of stable isotope-labelled substrates into intact lipid molecular species without the requirement for lipid hydrolysis and derivatisation. Such dynamic lipidomic methodologies using non-toxic stable isotopes can be readily applied to quantify lipid metabolic fluxes in clinical and metabolic studies in vivo. However, a significant current limitation is the absence of appropriate software to generate kinetic models of substrate incorporation into multiple products in the time domain. Finally, we discuss the future potential of stable isotope-mass spectrometry imaging to quantify the location as well as the extent of lipid synthesis. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.  相似文献   

17.
18.
Species of ruminal bacteria were screened for the ability to grow in media containing RNA or DNA as the energy source. Bacteroides ruminicola D31d and Selenomonas ruminantium HD4, GA192, and D effectively used RNA for growth, but not DNA. B. ruminicola D31d was able grow on nucleosides but not on bases or ribose. The S. ruminantium strains were able to grow when provided with either nucleosides or ribose but not bases. Strains of S. ruminantium, but not B. ruminicola D31d, were also able to use nucleosides as nitrogen sources. These data suggest that RNA fermentation may be a general characteristic of S. ruminantium.  相似文献   

19.
The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [3H]thymidine or [3H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degrees C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physiochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms.  相似文献   

20.
M A Cotta 《Applied microbiology》1990,56(12):3867-3870
Species of ruminal bacteria were screened for the ability to grow in media containing RNA or DNA as the energy source. Bacteroides ruminicola D31d and Selenomonas ruminantium HD4, GA192, and D effectively used RNA for growth, but not DNA. B. ruminicola D31d was able grow on nucleosides but not on bases or ribose. The S. ruminantium strains were able to grow when provided with either nucleosides or ribose but not bases. Strains of S. ruminantium, but not B. ruminicola D31d, were also able to use nucleosides as nitrogen sources. These data suggest that RNA fermentation may be a general characteristic of S. ruminantium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号