首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since sex steroid hormones and growth factors are known to modulate the proliferation of breast tumors, we have studied the effects of estrogen and progestin, their antagonists, and growth factors on the regulation of estrogen receptor (ER) mRNA and protein levels in T47D breast cancer cells, which contain low levels of ER, and in two sublines of MCF-7 cells which contain high ER levels. The mRNA levels were measured by Northern blot analysis using lambda OR8, a cDNA probe for ER, and protein levels were measured by hormone binding or Western blot analysis. Treatment of T47D cells with estradiol (E2) caused a 2.5-fold increase in ER mRNA (6.6 kilobases) levels after 48 h. The progestin R5020 evoked a marked decrease in ER mRNA and protein levels to 20% of control values, while the antiprogestin RU38,486 caused no change in ER. In MCF-7 cells, the effect of E2 on ER levels was dependent on the prior growth history of the cells. In cells grown in low estrogen [5% charcoal-dextran-treated calf serum with phenol red for 8 yr (MCF-7-K2)], which are still E2 responsive, treatment with E2, the antiestrogen LY117018, or both produced little change in ER mRNA or protein; in contrast, ER mRNA and protein were reduced by E2 to 40% and 50% of control levels, respectively, in MCF-7 cells (denoted MCF-7-K1) which had been maintained routinely in medium containing 5% calf serum. This decrease in ER mRNA was dose dependent; 10(-11) E2 reduced levels to 60%, and 10(-10) M E2 evoked the maximal drop to 40% of the control level in 2 days. LY117018 alone did not alter ER mRNA levels in these cells, but it completely prevented the down-regulation of ER by E2. Administration of progestin, but not antiprogestin, along with E2 partially prevented the decrease in ER evoked by E2. Addition of epidermal growth factor or insulin-like growth factor-I to MCF-7-K1 cells, which increased cell proliferation, had no detectable effect on ER levels. Treatment with transforming growth factor-beta, which decreased cell proliferation, reduced ER by about 20%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We developed a mouse monoclonal antibody (4G11) against insulin-like growth factor I receptor by immunizing mice with mouse embryo fibroblasts overexpressing the human insulin-like growth factor-I receptor. Not only did the 4G11 antibody inhibit the binding of [ (125)I]insulin-like growth factor-I to the fibroblast receptor, but 4G11 antibody also potently down-regulated the insulin-like growth factor-I receptor. 4G11 Fab fragment inhibited ligand binding, but did not down-regulate the receptor, suggesting that receptor aggregation is required for down-regulation. 4G11 antibody also down-regulated the receptor in MCF-7 breast cancer cells, a panel of colon cancer cells and MG-63 osteosarcoma cells. Receptor recovery in MCF-7 cells after down-regulation by 4G11 antibody was slow, requiring 32 - 48 h for full recovery. Receptor down-regulation in MCF-7 cells by 4G11 antibody was confirmed by FACS analysis of intact and permeabilized cells. In contrast to 4G11 antibody, insulin-like growth factor-I did not down-regulate the receptor in MCF-7 cells. Down-regulation of the receptor by 4G11 antibody in MCF-7 cells resulted in inhibition of Akt and MAPK activation by insulin-like growth factor-I. We conclude that the ability of a monoclonal antibody to down-regulate the receptor may be an important antibody property in targeting the insulin-like growth factor-I receptor for the treatment of certain cancers.  相似文献   

3.
Two different clones of Swiss 3T3 cells belonging to the same original cell line have been obtained, one of which was unresponsive to mitogenic stimulation (e.g. insulin-like growth factor-I, bombesin, insulin-like growth factor-I + bombesin), while the other clone showed a very high rate of DNA synthesis under identical conditions as demonstrated by 5-bromodeoxyuridine incorporation. Both types of cells expressed the IGF-I receptor and showed high contact inhibition. When highly purified nuclei from responsive cells, treated for a short time with bombesin and insulin-like growth factor-I or insulin-like growth factor-I alone, were incubated with [gamma-32P]adenosine triphosphate, the labelling of phosphatidylinositol-mono- and diphosphate decreased when compared to controls, while this transient effect did not appear in the nuclei from unresponsive cells. Similarly nuclear protein kinase C is activated only in responsive cells. Therefore, it seems that a direct link exists between polyphosphoinositide metabolism, protein kinase C activation and the early events leading to cell division, since the rapid changes in the labelling of both phosphatidylinositol mono- and di-phosphate occur only in nuclei from Swiss 3T3 cells, which respond to the mitogenic stimulus determined by insulin-like growth factor-I on its own, or in combination with bombesin.  相似文献   

4.
Regulation of breast tumor proliferation depends in a large part on a variety of hormones and growth factors. In this report we show that estrogen and antiestrogen modulate epidermal growth factor-receptor (EGF-R) level in the human breast cancer MCF-7 cells with opposite mechanisms. Although a short-term treatment (24h to 48h) with estradiol leads to a decrease in EGF-R number, the addition of hormone in cell culture for 5 days increases EGF-R level with a maximal effect observed at 10(-10) M estradiol. In contrast, when cells are treated with the antiestrogen hydroxytamoxifen, a dose-dependent decrease in EGF-R level occurs. We also report that EGF is able to induce estrogen receptors and, to a lesser extent, progesterone receptors when added to MCF-7 cell cultures. These results demonstrate an interaction between both estrogen receptor and EGF receptor growth promoting systems in target cells. The implications of such an interaction in the understanding of human breast cancer hormone responsiveness and, in the development of therapies, are discussed.  相似文献   

5.
6.
MCF-7 human breast cancer cells provide a useful in vitro model system to study hormone-responsive breast cancer as they contain receptors for estrogen and progesterone, and estrogen both induces the synthesis of specific proteins in these cells and increases their rate of proliferation. An MCF-7 cell line which was selected for resistance to adriamycin (MCF-7/AdrR) exhibits the phenotype of multidrug resistance (MDR), and displays multiple biochemical changes. MDR in MCF-7/AdrR is also associated with a loss of mitogenic response to estrogen and the development of cross-resistance to the antiestrogen 4-hydroxytamoxifen. In addition, while the parental MCF-7 cell line responds to estrogen with increased levels of progesterone receptors and the secretion of specific proteins, these estrogen responses are lost in MCF-7/AdrR. Furthermore, while the formation of tumors in nude mice by wild-type MCF-7 cells is dependent upon the presence of estrogen, MCF-7/AdrR cells form tumors in the absence of exogenous estrogen administration. These changes in hormonal sensitivity and estrogen-independent tumorigenicity of the multidrug-resistant MCF-7 cell line are associated with a loss of the estrogen receptor and a concomitant increase in the level of receptors for epidermal growth factor. Thus, in MCF-7/AdrR cells, the development of MDR is associated with alterations in the expression of both cytosolic and membrane receptors, resulting in resistance to hormonal agents and the expression of hormone-independent tumor formation.  相似文献   

7.
We previously demonstrated that antiestrogen 4-hydroxytamoxifen (OH-Tam) blocks the mitogenic activity of growth factors in breast cancer. We now investigate this mechanism by evaluating how OH-Tam affects growth factor binding and receptor tyrosine kinase activity. We show here that OH-Tam has an opposite effect on epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) binding in estrogen receptor (ER) positive cells. A decrease in IGF-1 binding sites may explain the reduced IGF-I mitogenic effect, whereas an increase in high affinity EGF binding associated with a decrease in in vitro receptor autophosphorylation rather favors the possibility of an alteration in EGF receptor tyrosine kinase activity. We conclude that OH-Tam may prevent growth factor action in ER+ cells both by modulating the concentration of growth factor binding sites and by altering growth factor receptor functionality.  相似文献   

8.
Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro.  相似文献   

9.
10.
BACKGROUND: Human MCF-7 cells have been studied extensively as a model for breast cancer cell growth. Many reports have established that serum-starved MCF-7 cells can be induced to proliferate upon the sole addition of 17beta-estradiol (E2). However, the extent of the mitogenic response to E2 varies in different MCF-7 strains and may even be absent. In this study we compared the E2-sensitivity of three MCF-7 laboratory strains. RESULTS: The MCF-7S line is non-responsive to E2, the MCF-7 ATCC has an intermediate response to E2, while the MCF-7 NKI is highly E2-sensitive, although the levels and activities of the estrogen receptor (ER) are not significantly different. Both suramin and IGF type I receptor blocking antibodies are able to inhibit the mitogenic response to E2-treatment in MCF-7 ATCC and MCF-7 NKI cells. From this we conclude that E2-induced proliferation is dependent on IGF type I receptor activation in all three MCF-7 strains. CONCLUSIONS: The results presented in this article suggest that E2-responsiveness of MCF-7 cells is dependent on the secretion of an autocrine factor activating the IGF-IR. All three strains of MCF-7 breast cancer cells investigated do not respond to E2 if the IGF-RI-pathway is blocked. Generally, breast cancer therapy is targeted at inhibiting estrogen action. This study suggests that inhibition of IGF-action in combination with anti-estrogen-treatment may provide a more effective way in treatment or even prevention of breast cancer.  相似文献   

11.
The effect of human interferons alpha and gamma alone and in combination with a novel antiestrogen toremifene were studied in vitro using MCF-7 cell line, an estrogen receptor positive and antiestrogen sensitive cell line. The effects were evaluated by a simple bioluminescence method with which the number of living cells was obtained as cellular adenosine triphosphate (ATP) content. The growth of MCF-7 cells was inhibited both by interferon alpha and interferon gamma. At least additive effect was evident when the cells were exposed to combination of interferons and toremifene: the combination was additive with interferon gamma + toremifene and synergistic with interferon alpha + toremifene. The combination of toremifene and interferons may have clinical importance.  相似文献   

12.
13.
14.
Summary Examination of estrogen-responsive processes in cell culture is used to investigate hormonal influence on cancer cell growth and gene expression. Most experimental studies have used breast cancer cell lines, in particular MCF7 cells, to investigate estrogen responsiveness. In this study we examined an ovarian cancer cell line, BG-1, which is highly estrogen-responsive in vitro. This observation, plus the fact that the cells are of ovarian rather than mammary gland origin, makes it an attractive alternative model. 17β-Estradiol, epidermal growth factor, and insulin-like growth factor induced proliferation of BG-1 and MCF7 cells. Viability was dependent on these growth factors in BG-1 cells, but not in MCF7 cells. Therefore, we examined the differences between these two cell lines with respect to estrogen and growth factor receptors. BG-1 cells have twice as many estrogen receptors as MCF7 cells, and BG-1 cells have higher insulin-like growth factor-1 and epidermal growth factor receptor levels than MCF7 cells. This may also explain why BG-1 cells proliferate 56% more robustly in serum and show more serum dependence in culture. In both BG-1 and MCF7 cells, epidermal growth factor receptor number is low (<20 000/cell), while insulin-like growth factor-1 receptor level was highest in estrogen receptor positive cell lines. For example, insulin-like growth factor-1 receptor was higher in BG-1 and MCF7 cells than in estrogen receptor negative cells (HeLa>MDA-MB-435>HBL100). In conclusion, BG-1 cells are an excellent model for understanding hormone responsiveness in ovarian tissue and an alternative for examining estrogen receptor-mediated and insulin-like growth factor-1/epidermal growth factor/estrogen cross-talk processes because of their sensitivity to these factors.  相似文献   

15.
Alpha IR-3, a monoclonal antibody to the insulin-like growth factor I receptor which blocks insulin-like growth factor I binding and inhibits its activity, inhibits the binding of 125I-insulin-like growth factor I to MCF-7 cells (an estrogen dependent human breast carcinoma cell line) with an IC-50 of approximately 100 ng/ml. It also inhibits the growth of MCF-7 cells cultured in 5% calf serum with approximately the same IC-50. Inhibition of growth occurs both when cells are cultured in the presence and absence of estrogen and is more pronounced when cells are grown at a low density. These findings demonstrate a requirement for insulin-like growth factor I for optimal growth of MCF-7 cells and suggest that it is an autocrine growth factor in these cells.  相似文献   

16.
A ligand-receptor pair, bone morphogenetic protein-7 (BMP7) and activin receptor IIB (actRIIB), was identified from a pool of DNA fragments recovered from MCF7 cells treated with 17beta-estradiol (E2) by chromatin immunoprecipitation with antiestrogen receptor-alphaantibody. The E2 responsiveness of both genes was confirmed in MCF cells and in the mouse uterus. Repeated treatment with E2 resulted in decreased expression of both actRIIB and BMP7 mRNA in the uteri of ovariectomized mice. A single oral administration of bisphenol A (BPA), an environmental estrogen, inhibited actRIIB and BMP7 expression and apoptosis in the luminal epithelium of the mouse uterus at diestrus (or early proestrus). This decrease, due to BPA administration, was restored by an estrogen receptor (ER) antagonist suggesting that it is mediated through ERs. These results suggest that E2 and BPA suppress estrogen-dependent apoptosis of epithelial cells of the endometrium through down-regulation of actRIIB and BMP7. Thus, we propose that BMP7 and actRIIB, a ligand-receptor pair, are involved in regulation of the apoptotic signaling pathway and might therefore be new biomarkers of the effects of environmental estrogens on the female reproductive tract.  相似文献   

17.
We have examined the effects of reversibly and irreversibly binding estrogenic and antiestrogenic ligands for the estrogen receptor on pS2 RNA accumulation in MCF-7 human breast cancer cells and on pS2-chloramphenicol acetyl transferase (CAT) fusion gene expression in transfected MCF-7 cells. In MCF-7 cells grown in the absence of estrogens, the reversibly binding estrogen, estradiol, and the affinity labeling estrogen, ketononestrol aziridine, KNA, evoked a 13-fold increase in pS2 RNA level. The reversibly binding antiestrogen trans-hydroxytamoxifen and the affinity labeling antiestrogens tamoxifen aziridine or desmethylnafoxidine aziridine behaved as partial agonists/antagonists. In thymidine kinase-chloramphenicol acetyltransferase (tk-CAT) fusion genes containing a 1000 base pair fragment of the pS2 5'-flanking region encompassing the estrogen responsive element of the gene [pS2 (-1100/-90) tk-CAT], estradiol and ketononestrol aziridine evoked a marked stimulation of CAT activity and, in transfected cells grown in both the presence or absence of the weak estrogen phenol red, the antiestrogens behaved as partial agonists/antagonists. This pS2 5'-flanking region displayed both estrogen-dependent and estrogen-independent enhancer activity as monitored by stimulation of CAT activity. Hormonal regulation of the transfected pS2 fusion gene was similar to that observed in the native pS2 gene of MCF-7 cells; however, antiestrogens, while still partial agonists-antagonists, were relatively more agonistic on the transfected fusion gene than on the native gene. One antiestrogen (ICI 164,384) that behaved as a pure estrogen antagonist on the native gene was a partial agonist-antagonist of pS2 gene expression in the plasmid. This study illustrates that the hormonal regulation of the pS2 gene, as characterized by the agonist-antagonist balance of estrogens and antiestrogens, is influenced by the DNA context of the pS2 estrogen responsive element. Also, the fact that estrogens and antiestrogens that form covalent bonds with the estrogen receptor modulate activity of the native pS2 gene and the pS2-tk-CAT fusion gene in a manner similar to that of their reversibly binding counterparts suggests that it may be possible to use these irreversibly binding ligands to follow the interaction of hormone-receptor complexes with regions regulating estrogenic stimulation of the pS2 gene.  相似文献   

18.
19.
Progesterone receptor gene expression is induced by estrogen in MCF-7 human breast cancer cells. Although it is generally thought that estrogen responsiveness is mediated through estrogen response elements (EREs), the progesterone receptor gene lacks an identifiable ERE. The progesterone receptor A promoter does, however, contain a half-ERE/Sp1 binding site comprised of an ERE half-site upstream of two Sp1 binding sites. We have used in vivo deoxyribonuclease I (DNase I) footprinting to demonstrate that the half-ERE/Sp1 binding site is more protected when MCF-7 cells are treated with estrogen than when cells are not exposed to hormone, suggesting that this region is involved in estrogen-regulated gene expression. The ability of the half-ERE/Sp1 binding site to confer estrogen responsiveness to a simple heterologous promoter was confirmed in transient cotransfection assays. In vitro DNase I footprinting and gel mobility shift assays demonstrated that Sp1 present in MCF-7 nuclear extracts and purified Sp1 protein bound to the two Sp1 sites and that the estrogen receptor enhanced Sp1 binding. In addition to its effects on Sp1 binding, the estrogen receptor also bound directly to the ERE half-site. Taken together, these findings suggest that the estrogen receptor and Sp1 play a role in activation of the human progesterone receptor A promoter.  相似文献   

20.
Acteoside and martynoside are plant phenylpropanoid glycosides exhibiting anticancer, cytotoxic and antimetastatic activities. We investigated their potential to activate estrogen receptor isoforms ERalpha and ERbeta in HeLa cells transfected with an estrogen response element (ERE)-driven luciferase (Luc) reporter gene and an ERalpha or ERbeta expression vector. Their estrogenic/antiestrogenic effects were also assessed in breast cancer cells (MCF7), endometrial cancer cells (Ishikawa) and osteoblasts (KS483), by measuring IGFBP3 levels, cell viability and number of mineralized nodules, respectively, seeking for a natural selective estrogen receptor modulator (SERM). Acteoside and martynoside antagonized both ERalpha and ERbeta (p<0.001), whereas they reversed the effect of E(2) mainly via ERalpha (p<0.001). Martynoside was a potent antiestrogen in MCF-7 cells, increasing, like ICI182780, IGFBP3 levels via the ER-pathway. In osteoblasts, martynoside induced nodule mineralization, which was abolished by ICI182780, implicating an ER-mediated mechanism. Furthermore, its antiproliferative effect on endometrial cells suggests that martynoside may be an important natural SERM. Acteoside was an antiestrogen in breast cancer cells and osteoblasts, without any effect on endometrial cells. Our study suggests that the nature is rich in selective ERalpha and ERbeta ligands, the discovery of which may lead to the development of novel neutraceutical agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号