首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
In this paper, we describe a production procedure of the one-to-one double helical complex of poly(dG)–poly(dC), characterized by a well-defined length (up to 10 kb) and narrow size distribution of molecules. Direct evidence of strands slippage during poly(dG)–poly(dC) synthesis by Klenow exo fragment of polymerase I is obtained by fluorescence resonance energy transfer (FRET). We show that the polymer extension results in an increase in the separation distance between fluorescent dyes attached to 5′ ends of the strands in time and, as a result, losing communication between the dyes via FRET. Analysis of the products of the early steps of the synthesis by high-performance liquid chromatography and mass spectroscopy suggest that only one nucleotide is added to each of the strand composing poly(dG)–poly(dC) in the elementary step of the polymer extension. We show that proper pairing of a base at the 3′ end of the primer strand with a base in sequence of the template strand is required for initiation of the synthesis. If the 3′ end nucleotide in either poly(dG) or poly(dC) strand is substituted for A, the polymer does not grow. Introduction of the T-nucleotide into the complementary strand to permit pairing with A-nucleotide results in the restoration of the synthesis. The data reported here correspond with a slippage model of replication, which includes the formation of loops on the 3′ ends of both strands composing poly(dG)–poly(dC) and their migration over long-molecular distances (μm) to 5′ ends of the strands.  相似文献   

2.
Negative superhelical strain induces the poly(dG)-poly(dC) sequence to adopt two totally different types of triple-helices, either a dG.dG.dC triplex in the presence of Mg(+)+ at both neutral and acidic pHs or a protonated dC+.dG.dC triplex in the absence of Mg(+)+ ions at acidic pH (1). To examine whether there are still other types of non-B DNA structures formed by the same sequence, we constructed supercoiled plasmid DNAs harboring varying lengths of the poly(dG) tract, and the structures adopted by each supercoiled plasmid DNA were studied with a chemical probe, chloroacetaldehyde. The potential of a poly(dG)-poly(dC) sequence to adopt non-B DNA structures depends critically on the length of the tract. Furthermore, in the presence of Mg(+)+ and at a mildly acidic pH, in addition to the expected dG.dG.dC triplex detected for the poly(dG) tracts of 14 to 30 base pairs (bp), new structures were also detected for the tracts longer than 35 bp. The structure formed by a poly(dG) tract of 45 bp revealed chemical reaction patterns consistent with a dG.dG.dC triplex and protonated dC+.dG.dC triple-helices fused together. This structure lacks single-stranded stretches typical of intramolecular triplexes.  相似文献   

3.
Three types of DNA: approximately 2700 bp polydeoxyguanylic olydeoxycytidylic acid [poly(dG)-poly(dC)], approximately 2700 bp polydeoxyadenylic polydeoxythymidylic acid [poly(dA)-poly(dT)] and 2686 bp linear plasmid pUC19 were deposited on a mica surface and imaged by atomic force microscopy. Contour length measurements show that the average length of poly(dG)-poly(dC) is approximately 30% shorter than that of poly(dA)-poly(dT) and the plasmid. This led us to suggest that individual poly(dG)-poly(dC) molecules are immobilized on mica under ambient conditions in a form which is likely related to the A-form of DNA in contrast to poly(dA)-poly(dT) and random sequence DNA which are immobilized in a form that is related to the DNA B-form.  相似文献   

4.
The formation of an intramolecular dG.dG.dC triplex in Escherichia coli cells is demonstrated at single-base resolution. The intramolecular dG.dG.dC triplex structure was probed in situ for E. coli cells containing plasmid DNAs with varying lengths of poly(dG).poly(dC) tracts employing chloroacetaldehyde. This chemical probe reacts specifically with unpaired DNA bases. The triplex structure formed with the poly(dG).poly(dC) tracts of 35 and 44 base-pairs, but not with 25 base-pairs. The triplex was detected only one to two hours after the chloramphenicol treatment: the period at which the extracted plasmid DNA revealed the maximal superhelical density.  相似文献   

5.
An endonuclease activity (termed endonuclease G) that selectively cleaves DNA at (dG)n X (dC)n tracts has been partially purified from immature chicken erythrocyte nuclei. Sites where n greater than or equal to 9 are cleaved in a manner that resembles types II and III restriction nucleases. The nicking rate of the G-strand is 4- to 10-fold higher than that of the C-strand depending on the length of the (dG)n X (dC)n tract and/or nucleotide composition of the flanking sequences. Endonuclease G hydrolyzes (dG)24 X (dC)24 of supercoiled DNA in a bimodal way every 9-11 nucleotides, the maxima in one strand corresponding to minima in the opposite, suggesting that it binds preferentially to one side of the double helix. The nuclease produces 5' phosphomonoester ends and its activity is dependent on Mg2+ or Mn2+. The wide distribution and high relative activity of endonuclease G in a variety of tissues and species argues for a general role of the enzyme. The striking correlation between genetic instability and poly(dG) X poly(dC) tracts in DNA suggests that these sequences and endonuclease G are involved in recombination processes.  相似文献   

6.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

7.
T Kohwi-Shigematsu  Y Kohwi 《Cell》1985,43(1):199-206
Supercoiled plasmid DNAs (at bacterial superhelical density) harboring the homopurine-homopyrimidine sequence, poly(dG)-poly(dC), were reacted with bromoacetaldehyde (BAA), a reagent that reacts with unpaired DNA bases. Not only did the poly(dG)-poly(dC) sequence react with BAA but, surprisingly, neighboring sequences located 3' to the contiguous G sequences also reacted. The altered conformation in the poly(dG)-poly(dC) sequence and in the neighboring sequence occurred in the same supercoiled plasmid DNA molecule. Furthermore, the occurrence of an "unpaired" conformation in the neighboring sequence is strictly due to a positional effect, since it is observed when the poly(dG)-poly(dC) segment is adjacent to a variety of neighboring sequences.  相似文献   

8.
The binding site and the geometry of Co(III)meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (CoTMPyP) complexed with double helical poly(dA)·poly(dT) and poly(dG)·poly(dC), and with triple helical poly(dA)·[poly(dT)]2 and poly(dC)·poly(dG)·poly(dC)+ were investigated by circular and linear dichroism (CD and LD). The appearance of monomeric positive CD at a low [porphyrin]/[DNA] ratio and bisignate CD at a high ratio of the CoTMPyP-poly(dA)·poly(dT) complex is almost identical with its triplex counterpart. Similarity in the CD spectra was also observed for the CoTMPyP-poly(dG)·poly(dC) and -poly(dC)·poly(dG)·poly(dC)+ complex. This observation indicates that both monomeric binding and stacking of CoTMPyP to these polynucleotides occur at the minor groove. However, different binding geometry of CoTMPyP, when bind to AT- and GC-rich polynucleotide, was observed by LD spectrum. The difference in the binding geometry may be attributed to the difference in the interaction between polynucleotides and CoTMPyP: in the GC polynucleotide case, amine group protrude into the minor groove while it is not present in the AT polynucleotide.  相似文献   

9.
Optical spectroscopic properties of 4',6-diamidino-2-phenylindole (DAPI) and ethidium bromide complexed with poly(dG).poly(dC).poly(dC)(+) triplex and poly(dG).poly(dC) duplex were compared in this study. When complexed with both duplex and triplex, ethidium is characterized by hypochromism and a red shift in the absorption spectrum, a complicate induced circular dichroism (CD) band in the polynucleotide absorption region, and a negative reduced linear dichroism signal in both polynucleotide and drug absorption regions. The spectral properties for both duplex- and triplex-bound ethidium are identical and both can be understood by the intercalation binding mode. In contrast, the absorption and CD spectra of DAPI complexed with triplex differ from those of the DAPI-duplex complex, although both complexes can be understood by the intercalation binding mode. Considering that the third strand runs along the major groove of the template duplex, we conclude that the DAPI molecule partially intercalates near the major groove of the duplex, where the third strand can affect its spectroscopic properties.  相似文献   

10.
The acid-base titration (pH 8 --> pH 2.5 --> pH 8) of eleven mixing curve samples of the poly(dG) plus poly(dC) system has been performed in 0.15 M NaCl. Upon protonation, poly(dG).poly(dC) gives rise to an acid complex, in various amounts according to the origin of the sample. We have established that the hysteresis of the acid-base titration is due to the non-reversible formation of an acid complex, and the liberation of the homopolymers at the end of the acid titration and during the base titration: the homopolymer mixtures remain stable up to pH 7. A 1G:1C stoichiometry appears to be the most probable for the acid complex, a 1G:2C stoichiometry, as found in poly(C(+)).poly(I).poly(C) or poly(C(+)).poly(G).poly(C), cannot be rejected. In the course of this study, evidence has been found that the structural consequences of protonation could be similar for both double stranded poly(dG).poly(dC) and G-C rich DNA's: 1) protonation starts near pH 6, dissociation of the acid complex of poly(dG).poly(dC) and of protonated DNA take place at pH 3; 2) the CD spectrum computed for the acid polymer complex displays a positive peak at 255 nm as found in the acid spectra of DNA's; 3) double stranded poly(dG).poly(dC) embedded in triple-stranded poly(dG).poly(dG).poly(dC) should be in the A-form and appears to be prevented from the proton induced conformational change. The neutral triple stranded poly(dG).poly(dG).poly(dC) appears therefore responsible, although indirectly, for the complexity and variability of the acid titration of poly(dG).poly(dC) samples.  相似文献   

11.
Duplex DNA containing oligo(dG.dC)-rich clusters can be isolated by specific binding to poly(rC)-Sephadex. This binding, probably mediated by the formation of an oligo(dG.dC)rC+ triple helix, is optimal at pH 5 in 50% formamide, 2 M LiCl; the bound DNA is recovered by elution at pH 7.5. Using this method we find that the viral DNAs PM2, lambda and SV40 contain at least 1, 1 and 2 sites for binding to poly(rC)-Sephadex, respectively. These binding sites have been mapped in the case of SV40; the binding sites can in turn be used for physical mapping studies of DNAs containing (dG.dC) clusters. Inspection of the sequence of the bound fragments of SV40 DNA shows that a (dG.dC)6-7 tract is required for the binding of duplex DNA to poly(rC)-Sephadex. Although about 60% of rabbit DNA cleaved with restriction endonuclease KpnI binds to poly(rC)-Sephadex, no binding is observed for the 5.1 kb DNA fragment generated by KpnI digestion, which contains the rabbit beta-globin gene. This indicates that oligo(dG.dC) clusters are not found close to the rabbit beta-globin gene.  相似文献   

12.
We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin–biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics.  相似文献   

13.
Abstract

Antibodies have been raised to the synthetic DNA polymer poly(dG)·poly(dC). These antibodies have the ability to distinguish this right-handed polymer from natural mixed sequence DNA, as well as from other right- and left-handed synthetic DNA polymers. They show reduced but measurable binding to synthetic polymers which contain various combinations of guanine and cytosine polynucleotides suggesting that both helical shape and sequence are recognized by this antiserum.  相似文献   

14.
The inhibitory effect of the polypeptide antibiotics netropsin and distamycin A on DNA dependent nucleic acid synthesis has been shown to be related to the base composition of the template DNA. A number of natural DNA's of quite different dA·dT content as well as poly (dI-dC)·poly (dI-dC), poly (dA-dT)·poly (dA-dT), poly (dA) · poly (dT) and poly (dG)·poly(dC) has been studied as templates in DNA and in part in RNA polymerase reaction. The highest binding efficiency of netropsin existing for (dA·dT)-containing DNA polymers and the less pronounced interaction with the (dI·dC)-containing polymer shown by the melting and CD spectral behaviour of the complexes are entirely reflected in the template inactivation. The same is evident for distamycin A. However, in contrast to netropsin the antibiotic distamycin A exhibits some binding tendency to poly (dG)·poly (dC). Binding effects of a netropsin derivative to DNA and (dA·dT)-containing polymers suggest the importance of hydrogen bonds of the peptide groups in the complex formation.  相似文献   

15.
We have undertaken a search for mammalian DNA-binding proteins that enhance the activity of DNA polymerases in a template sequence-specific fashion. In this paper, we report the extensive purification and characterization of a new DNA-binding protein from rabbit liver that selectively stimulates DNA polymerases to copy synthetic poly[d(G-C)] and the poly(dC) strand of poly(dC).poly(dG) as well as single-stranded natural DNA that contains stretches of oligo(dC). The enhancing protein, a polypeptide of 65 kDa designated factor C, stimulates the copying of the two synthetic templates by Escherichia coli DNA polymerase I, Micrococcus luteus polymerase, and eukaryotic DNA polymerases alpha and beta, but not by avian myeloblastosis virus polymerase. Factor C, however, does not affect utilization by these polymerases of the poly(dG) strand of poly(dC).poly(dG), of poly(dC) primed by oligo(dG), or of poly(dA).poly(dT) and poly[d(A-T)]. With polymerase I, Michaelis constants (Km) of poly[d(G-C)] and of the poly(dC) strand of poly(dC).poly(dG) are decreased by factor C 37- and 4.7-fold, respectively, whereas maximum velocity (Vmax) remains unchanged. By contrast, neither the Km value of the poly(dG) strand of poly(dC).poly(dG) nor the Vmax value with this template is altered by factor C. Rates of copying of activated DNA, denatured DNA, or singly primed M13 DNA are not affected significantly by factor C. However, primer extension analysis of the copying of recombinant M13N4 DNA that contains runs of oligo(dC) within an inserted thymidine kinase gene shows that factor C increases processivity by specifically augmenting the efficiency at which polymerase I traverses the oligo(dC) stretches. Direct binding of factor C to denatured DNA is indicated by retention of the protein-DNA complex on columns of DEAE-cellulose. Binding of factor C to poly[d(G-C)] is demonstrated by the specific adsorption of the enhancing protein to columns of poly[d(G-C)]-Sepharose. We propose that by binding to poly[d(G-C)] and to poly(dC).poly(dG), factor C enables tighter binding of some DNA polymerases to these templates and facilitates enzymatic activity.  相似文献   

16.
M H Sarma  G Gupta  R H Sarma 《Biochemistry》1986,25(12):3659-3665
Secondary structures of poly(dG).poly(dC) and poly(dG).poly(dm5C) in solution are determined by nuclear Overhauser effect (NOE) measurements on GH8-deuterated and -nondeuterated DNAs with low presaturation pulse lengths (10-25 ms) and low-power and prolonged accumulations in the range of 50,000-72,000 scans. Under these conditions, the NOE difference spectra were free from diffusion. Primary NOEs between base protons GH8/CH6 and sugar protons H1', H2'/H2', and H3' suggest that in poly(dG).poly(dC) both guanine and cytosine nucleotides adopt a C3'-endo, low anti X = 200-220 degrees conformation. Computer modeling of the NOE data enable identification for the first time, in terms of the geometry of the nucleotide repeat, handedness, and helix geometry, of the structure of poly(dG).poly(dC) to be the A form, and the derived structure for the polymer duplex is very close to the single crystal structure of the double-helical d-GGGGCCCC [McCall, M., Brown, T., & Kennard, O. (1985) J. Mol. Biol. 183, 385-396]. Similar nuclear Overhauser effect data on poly(dG).poly(dm5C) revealed that G and m5C adopt a C2'endo, anti X = 240-260 degrees conformation, which indicates that this DNA exhibits the B form in solution. In summary, the results presented in this paper demonstrate that methylation of cytosines in poly(dG).poly(dC) causes A----B transition in the molecule.  相似文献   

17.
A circular dichroism study of poly dG, poly dC, and poly dG:dC   总被引:22,自引:0,他引:22  
D M Gray 《Biopolymers》1974,13(10):2087-2102
We have measured the ultraviolet circular dichroism spectra of oligo d(pG)5, poly dN AcG, poly dI, poly dC, two samples of poly dG, and four samples containing double-stranded poly dG:dC. We find that oligo d(pG)5 and poly dG exist in self-complexed forms as well as in single-stranded forms. Unlike the self-complexed form of poly dG, the single-stranded form of poly dG can hydrogen-bond with single-stranded poly dC. We present spectral data for double-stranded poly dG:dC, which can be used to help characterize poly dG:dC preparations and which provide a basis for resolving discrepancies among other reported poly dG:dC spectra.  相似文献   

18.
A study of the interaction between poly(dG)-poly(dC) and poly(rC) demonstrates that, at neutral pH and high ionic strength, there is replacement of the dC strand by poly(rC). At acid pH, formation of a triple-stranded complex which equally may involve the replacement phenomenon is observed. There is no evidence for interaction at neutral pH between poly(dG)-poly(dC) and oligo(rC), while a three-stranded complex is formed at acid pH. These data are consistent with the studies of comparative stabilities of double stranded deoxy or ribo polymers and deoxy-ribo hybrids.  相似文献   

19.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

20.
The influence of the amino group of guanine on the molecular electrostatic potential and the accessibility to reactive sites of B-DNA is investigated by comparing the two model double helices poly (dI.dC) and poly (dG.dC). The calculations clarify the “disruptive” role of the guanine amino group on nucleic acid-polypeptide interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号