首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isocapnic hypoxaemia (delta PaO2 = -8.0 +/- 0.5 mmHg; delta CaO2 = -2.86 +/- 0.20 ml/dl) was produced in fetal sheep by having the ewe breathe for one hour a gas mixture (v/v) of 10.5% O2 and 1.5% CO2 in N2. Mean fetal heart rate, blood pressure, and incidence of low voltage electrocortical activity were not affected. However, the incidence of rapid-eye-movements and breathing activity was reduced by about 40%. Breathing movements during hypoxaemia had a mean inspiratory time, breath interval, and tracheal pressure amplitude which did not differ significantly from those during control experiments in which the ewe breathed air from the plastic bag. These observations suggest that hypoxia decreases the incidence of breathing movements but does not affect the amplitude or pattern of breathing activity and that it may reduce the incidence of eye movements and breathing activity through a common mechanism.  相似文献   

2.
We studied the effects of inhibitors of prostaglandin synthesis on fetal breathing movements on 17 occasions in 11 lambs (gestational age 125-141 days). We gave 12 h infusions of sodium mechlofenamate (8.6-22.2 mg.kg-1) in 13 studies and indomethacin (21.8-38.8 mg.kg-1) in four studies. Results were similar with both agents and did not correlate with drug dosage. There were no changes in fetal arterial blood pressure, pH or blood gas tensions. We assessed fetal breathing movements by measurements of tracheal pressure for a control period of 224 h prior to and 208 h during the infusion of inhibitors of prostaglandin synthesis; their administration caused a marked stimulation of fetal breathing movements judged from the following four variables: (1) incidence of fetal breathing movements increased from 38.4 to 69.2% of the time (P < 0.001); (2) average amplitude of change in tracheal pressure during fetal breathing movements increased from 4.1 to 6.0 torr (P < 0.01); (3) maximal amplitude of change in tracheal pressure during fetal breathing movements increased from 8.8 to 13.4 torr (P < 0.01); and (4) the duration of the longest continuous episode of fetal breathing movements increased from 37 to 229 min (P < 0.05). Two fetuses had electrocorticogram (ECoG) recordings. In control periods, fetal breathing movements occurred only during low voltage, high frequency ECoG activity; however, during infusions of inhibitors of prostaglandin synthesis, fetal breathing movements occurred also during high voltage, low frequency ECoG activity. We conclude that inhibitors of prostaglandin synthesis stimulate fetal breathing movement in fetal sheep. These results suggest that a component of the prostaglandin system is a factor which inhibits breathing movements during fetal life.  相似文献   

3.
The effects of hypercapnia and hypoxemia on breathing movements were studied in 12 chronically decorticated fetal sheep, 127-140 days gestation. The fetal state of consciousness was defined in terms of activity of the lateral rectus and nuchal muscles. Arterial blood pressure was monitored. Fetal breathing was determined by integrated diaphragmatic electromyogram (EMG) and analyzed in terms of inspiratory time (TI), expiratory time (TE), electrical equivalent of tidal volume (EVT), breath interval (TT), duty cycle (TI/TT), mean inspiratory flow equivalent (EVT/TI), and instantaneous ventilation equivalent (EVT/TT). Fetal breathing occurred only during episodes of rapid-eye movements, and the response to hypercapnia consisted of an increase in EVT, TI, EVE, and EVT/TI and a decrease in the coefficient of variation of all measured parameters. Induction of hypoxia during episodes of spontaneous fetal breathing produced a decrease in the rate of breathing and an increase in EVT and TI with no change in the variability of all parameters studied. Since similar responses to hypercapnia and hypoxemia are seen in the intact fetus, we conclude that the cerebral cortex has no obvious effect on the chemical control of fetal breathing.  相似文献   

4.
Effect of inspiratory muscle fatigue on breathing pattern   总被引:2,自引:0,他引:2  
Our aim was to determine whether inspiratory muscle fatigue changes breathing pattern and whether any changes seen occur before mechanical fatigue develops. Nine normal subjects breathed through a variable inspiratory resistance with a predetermined mouth pressure (Pm) during inspiration and a fixed ratio of inspiratory time to total breath duration. Breathing pattern after resistive breathing (recovery breathing pattern) was compared with breathing pattern at rest and during CO2 rebreathing (control breathing pattern) for each subject. Relative rapid shallow breathing was seen after mechanical fatigue and also in experiments with electromyogram evidence of diaphragmatic fatigue where Pm was maintained at the predetermined level during the period of resistive breathing. In contrast there was no significant difference between recovery and control breathing patterns when neither mechanical nor electromyogram fatigue was seen. It is suggested that breathing pattern after inspiratory muscle fatigue changes in order to minimize respiratory sensation.  相似文献   

5.
The aim of this study was to characterize the pre-natal activity of the respiratory muscles in a non-ruminant, the pig. Tracheal pressure was recorded from 11 unanaesthetized fetal pigs in utero during late gestation in 9 sows. Two types of inspiratory effort occurred episodically in each fetus during each recording period. Episodes of breathing movements lasted 8.6 +/- 1.1 min and their overall incidence was 41.1 +/- 3.4% of recording time. The mean amplitude of the respiratory efforts was 7.6 +/- 1.1 mmHg and the mean inspiratory time was 0.8 +/- 0.1 s. Episodes of non-respiratory inspiratory efforts, considered to be fetal hiccups, lasted 5.6 +/- 0.8 min. Individual hiccups had a duration of 150-200 msec, a mean amplitude of 41.4 +/- 2.4 mmHg and a mean frequency, during episodes, of 21.9 +/- 2.0 min-1. In contrast to fetal breathing movements, hiccups appeared to be stereotyped events. It is concluded that, in common with other ruminant and non-ruminant species, two types of inspiratory effort occur in the fetal pig. Fetal hiccups, which have been observed in non-ruminant species, may be analogous to deep inspiratory efforts in the sheep fetus. The stimulus for, and function of, fetal hiccupping remain to be determined.  相似文献   

6.
We determined effects of augmented inspiratory and expiratory intrathoracic pressure or abdominal pressure (Pab) excursions on within-breath changes in steady-state femoral venous blood flow (Qfv) and net Qfv during tightly controlled (total breath time = 4 s, duty cycle = 0.5) accessory muscle/"rib cage" (DeltaPab <2 cmH2O) or diaphragmatic (DeltaPab >5 cmH2O) breathing. Selectively augmenting inspiratory intrathoracic pressure excursion during rib cage breathing augmented inspiratory facilitation of Qfv from the resting limb (69% and 89% of all flow occurred during nonloaded and loaded inspiration, respectively); however, net Qfv in the steady state was not altered because of slight reductions in femoral venous return during the ensuing expiratory phase of the breath. Selectively augmenting inspiratory esophageal pressure excursion during a predominantly diaphragmatic breath at rest did not alter within-breath changes in Qfv relative to nonloaded conditions (net retrograde flow = -9 +/- 12% and -4 +/- 9% during nonloaded and loaded inspiration, respectively), supporting the notion that the inferior vena cava is completely collapsed by relatively small increases in gastric pressure. Addition of inspiratory + expiratory loading to diaphragmatic breathing at rest resulted in reversal of within-breath changes in Qfv, such that >90% of all anterograde Qfv occurred during inspiration. Inspiratory + expiratory loading also reduced steady-state Qfv during mild- and moderate-intensity calf contractions compared with inspiratory loading alone. We conclude that 1) exaggerated inspiratory pressure excursions may augment within-breath changes in femoral venous return but do not increase net Qfv in the steady state and 2) active expiration during diaphragmatic breathing reduces the steady-state hyperemic response to dynamic exercise by mechanically impeding venous return from the locomotor limb, which may contribute to exercise limitation in health and disease.  相似文献   

7.
For some time it has been suggested that breathing movements are made "in utero" and recently measurements of tracheal pressure and lung liquid flow in chronic fetal preparations have led to the hypothesis that rapid changes in these parameters are the result of respiratory muscle activity. To test this hypothesis diaphragmatic electrical activity was measured in seven chronic unanesthetized fetal sheep preparations and correlated with lung liquid flow and tracheal pressure. Diaphragmatic activity led to a fall of tracheal pressure and movement of a small volume of lung liquid into the lung. After the activity ceased, tracheal pressure returned to normal and flow diminished to zero or was directed out of the lung. The breathing pattern was unassociated with the net movement of lung liquid out of the lung. A histogram of the interval between breaths revealed a changing pattern of activity throughout gestation. The pattern was significantly altered after premature delivery of one animal with a respiratory problem. These observations provide evidence that respiratory muscles are active "in utero" and that the pattern of activity changes throughout gestation.  相似文献   

8.
We have constructed an electronically controlled positive-pressure ventilator actuated by phrenic neural activity for use in open-chested or paralyzed experimental animals for the study of breathing pattern. A Bird Mark 14 positive-pressure ventilator was modified such that flow is a linear function of a command signal. Flow is delivered by advancing an air valve with a servo-motor that is controlled by one of three different operational modes. In two of the modes, the difference between the electronic average of inspiratory phrenic activity (moving average) and a feedback signal determines the inspiratory flow. The feedback signal is derived from either tracheal pressure or an electronic measure of inspired volume. In the third mode, the moving average is differentiated to provide control of inspiratory flow and volume. Physiological flow profiles were created using all three operational modes. Integration of an air-valve position signal provides an electronic measure of tidal volume. An additional feature of this ventilator allows inspiratory flow and duration to be predetermined for a given breath.  相似文献   

9.
Immediate response to resistive loading in anesthetized humans   总被引:1,自引:0,他引:1  
In eight spontaneously breathing anesthetized subjects (halothane: approximately 1 minimal alveolar concn; 70% N2O-30% O2), we determined 1) the inspiratory driving pressure by analysis of the pressure developed at the airway opening (Poao) during inspiratory efforts against airways occluded at end expiration; 2) the active inspiratory impedance; and 3) the immediate (first loaded breath) response to added inspiratory resistive loads (delta R). Based on these data we made model predictions of the immediate tidal volume response to delta R. Such predictions closely fitted the experimental results. The present investigation indicates that 1) in halothane-anesthetized humans the shape of the Poao wave differs from that in anesthetized animals, 2) the immediate response to delta R is not associated with appreciable changes in intensity, shape, and timing of inspiratory neural drive but depends mainly on intrinsic (nonneural) mechanisms; 3) the flow-dependent resistance of endotracheal tubes must be taken into account in studies dealing with increased neuromuscular drive in intubated subjects; and 4) in anesthetized humans Poao reflects the driving pressure available to produce the breathing movements.  相似文献   

10.
The functional state of external respiration and the features of its regulation in healthy persons were studied under conditions of microgravity simulated using dry immersion. The lung volume, the ratio of thoracic and abdominal components during quiet breathing and performing various respiratory maneuvers, as well as the parameters that characterize the regulation of breathing (the duration of breath holding and the ability to voluntarily control respiratory movements), were recorded during the baseline period, on days 2 and 4 of dry immersion, and after the end of the dry immersion. It has been shown that the breathing pattern did not significantly change under conditions of dry immersion compared to the baseline period; however, the inspiratory reserve volume increased (p < 0.05), while the expiratory reserve volume decreased (p < 0.01). Dry immersion did not alter pulmonary ventilation, yet most of the subjects trended toward an increase in the contribution of the abdominal component of breathing movements during quiet breathing and demonstrated a statistically significant increase in this parameter during the lung vital capacity maneuver. The durations of the inspiratory and expiratory maximal breath holding under conditions of immersion did not differ from the background values. During the immersion, the accuracy of voluntary control of breathing increased. We believe that immersion, similar to microgravity, leads to changes in the reserve lung volume, which are partly because of changes in the body position; changes in relative contributions of the thoracic and abdominal components in the breathing movements; and changes in voluntary breath regulation.  相似文献   

11.
Adequate pulmonary function at birth depends upon a mature surfactant system and lungs of normal size. Surfactant is controlled primarily by hormonal factors, especially from the hypophysis, adrenal, and thyroid; but these have little influence on fetal lung growth. In contrast, current data indicate that lung growth is determined by the following physical factors that permit the lungs to express their inherent growth potential. (a) Adequate intrathoracic space: lesions that decrease intrathoracic space impede lung growth, apparently by physical compression. (b) Adequate amount of amniotic fluid: oligohydramnios retards lung growth, possibly by lung compression or by affecting fetal breathing movements or the volume of fluid within the potential airways and airspaces. (c) Fetal breathing movements of normal incidence and amplitude: fetal breathing movements stimulate lung growth, possibly by stretching the pulmonary tissue, and do not affect mean pulmonary blood flow but do induce small changes in phasic flow; these changes are probably too slight to influence lung growth. (d) Normal balance of volumes and pressures within the potential airways and airspaces: in the fetus, tracheal pressure greater than amniotic pressure greater than pleural pressure. This differential produces a distending pressure which may promote lung growth. Disturbing the normal pressure relationships alters the volume of fluid in the lungs and distorts lung growth, which is stimulated by distending the lungs and is impeded by decreasing lung fluid volume. The mechanisms by which these factors affect lung growth remain to be defined. Fetal lung growth also depends on at least a small amount of blood flow through the pulmonary arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To investigate the changes in diaphragm electromyogram (EMG) during the course of severe loaded breathing, we subjected five conscious adult sheep to inspiratory flow resistive breathing (resistance greater than 150 cmH2O X l-1 X s) for up to 2-3 h and studied the total EMG power per breath (iEMG) and the EMG power per unit time after dividing the duration of EMG activity within each breath into three equal parts (iEMG1, iEMG2, and iEMG3). Both total breath iEMG and transdiaphragmatic pressure (Pdi) increased, remained at a high level for a certain period of time, and then started to fall. A change in the pattern of iEMG within a breath was observed during loaded breathing. The increase in total-breath iEMG was associated mostly with an increase in iEMG3, or the last part of the EMG power within each inspiration. Similarly, the decrease in total breath iEMG was primarily due to a decrease in iEMG3. We conclude that, in sheep subjected to severe IFR loads for prolonged periods the marked increase in total-breath iEMG at the beginning of loaded breathing and the marked decrease in this iEMG at the time of decrease in Pdi are largely due to changes in iEMG that occur during the latter third of each breath. We speculate that during loaded breathing the recruitment pattern of diaphragmatic muscle fibers changes during the course of an inspiratory effort.  相似文献   

13.
We examined the effect of sleep state on the response of genioglossus muscle (EMGgg) activity to total airway occlusion applied at 1) nasal (N) airway [and thus exposing the upper airway (UAW) to pressure changes] and 2) tracheal (T) airway (thus excluding UAW from pressure changes). A total of 233 tests were performed during wakefulness (W), 98 tests in slow-wave sleep (SWS), and 72 tests in rapid-eye-movement (REM) sleep. Prolongation of inspiratory time (TI) of the first occluded effort occurred in all tests irrespective of behavioral state, with the greatest increase seen in awake N tests. Nasal tests augmented EMGgg activity in the first occluded breath and produced a linear increase in EMGgg during occlusion. The EMGgg activity at any given time during nasal occlusion in SWS was less than that recorded during W tests. There was a marked reduction in EMGgg response to N occlusion during REM sleep. The EMGgg activity during awake T tests was significantly less than that of N tests at any given time during occlusion. There was no relationship between the level of EMGgg activity and asphyxia in T tests performed during SWS and REM sleep. Nasal tests decreased the force generated by the inspiratory pump muscles and the central drive to breathing compared with T tests. These results confirm the important role of the UAW in regulating breathing pattern and indicate that both immediate and progressive load-compensating responses during nasal occlusion are influenced by information arising from the UAW.  相似文献   

14.
Oligohydramnios commonly leads to fetal lung hypoplasia, but the mechanisms are not fully understood. Our aim was to determine, in fetal sheep, the effects of prolonged oligohydramnios on the incidence and amplitude of tracheal pressure fluctuations associated with fetal breathing movements (FBM), on tracheal flow rate during periods of FBM (VtrFBM) and periods of apnea (Vtrapnea), on tracheal pressure relative to amniotic sac pressure, and on amniotic sac pressure relative to atmospheric pressure. In five sheep, oligohydramnios was induced by draining amniotic and allantoic fluids from 107 to 135 days of gestation (411.8 +/- 24.4 ml/day), resulting in fetal lung hypoplasia. In five control sheep, amniotic fluid volume was 732.3 +/- 94.4 ml. Oligohydramnios increased the incidence of FBM by 14% at 120 and 125 days and the amplitude of FBM by 30-34% at 120-130 days compared with controls. From 120 days onward, VtrFBM was 35-55% lower in experimental fetuses than in controls. Influx of lung liquid during FBM was 87% lower in experimental fetuses than in controls. Vtrapnea, tracheal pressure, and amniotic sac pressure were not significantly altered by oligohydramnios. Our tracheal flow rate data suggest that transient changes in lung liquid volume during periods of FBM and periods of apnea were diminished by oligohydramnios. We conclude that the primary factor in the etiology of oligohydramnios-induced lung hypoplasia is not an inhibition of FBM (as measured by tracheal pressure fluctuations) or a reduction in amniotic fluid pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Extra-dural or cerebroventricular intracranial pressure was measured in 7 unanaesthetized fetal sheep (123-137 days gestation). Basal intracranial pressure was 6.7 +/- 1.7 mmHg, but there were many transient increases of pressure in association with spontaneous changes of amniotic pressure, fetal intrathoracic pressure, and particularly when the fetal nuchal muscles were active. These spontaneous increases of intracranial pressure were often associated with cessation of breathing movements and change of the electrocorticogram from low to high voltage activity. To test whether increased intracranial pressure influenced breathing movements and electrocortical activity, intracranial pressure was raised either by occluding the superior vena cava for 1 min with an implanted extravascular cuff, or by extra-dural injection of 0.3-1.0 ml of 0.9% NaCl. Increasing the intracranial pressure 5-15 mmHg by either method during low voltage electrocortical activity caused cessation of breathing movements, electro-ocular activity, and change of the electrocorticogram from low to high voltage in a significant proportion of trials. We propose that natural fluctuations of intracranial pressure caused by compression of the fetal body or skull, by body movements or by uterine activity, may cause changes in electrocortical activity and breathing movements.  相似文献   

16.
To examine the relationship between fetal O2 consumption and fetal breathing movements, we measured O2 consumption, umbilical blood flow, and cardiovascular and blood gas data before, during, and after fetal breathing movements in conscious chronically catheterized fetal lambs. During fetal breathing movements, O2 consumption increased by 30% from a control value of 7.7 +/- 0.7 (SE) ml X min-1 X kg-1. Umbilical blood flow was 210 +/- 21 ml X min-1 X kg-1 before fetal breathing movements; in 9 of 16 samples it increased by 52 +/- 12 ml X min-1 X kg-1, while in the other 7 it decreased by 23 +/- 9 ml X min-1 X kg-1. Umbilical arterial and venous O2 partial pressures and pH fell during fetal breathing movements, and the fall was greater when umbilical blood flow was decreased. Partial CO2 pressure rose in both vessels, and again the increase was greatest when umbilical blood flow fell during fetal breathing movements. Also associated with a fall in umbilical blood flow was the transition from low-amplitude irregular to large-amplitude regular fetal breathing movements. It is concluded that fetal breathing movements increase fetal O2 demands and are associated with a transient deterioration in fetal blood gas status, which is most severe during large-amplitude breathing movements.  相似文献   

17.
This study was designed to determine the adenosine (Ado) receptor subtype that mediates the depressant effects of Ado on fetal breathing and rapid eye movements (REM). In chronically catheterized fetal sheep (>0.8 term), intra-arterial infusion of N(6)-cyclopentyladenosine (CPA), an Ado A(1)-receptor agonist, increased the incidence of high-voltage electrocortical (ECoG) activity while virtually abolishing low-voltage activity, REM, and breathing. These effects were blocked by 9-cyclopentyl-1,3-dipropylxanthine (DPCPX), an Ado A(1)-receptor antagonist. Infusion of DPCPX alone increased breath amplitude but had no significant effect on inspiratory duration, breath interval, incidence of REM, or incidence of low-voltage activity. Ado A(2A)-receptor blockade with ZM-241385 increased the incidence of low-voltage ECoG activity, REM, and breathing but had no effect on breath amplitude or respiratory cycle. Both DPCPX and ZM-241385 eliminated the inhibitory effects of Ado on REM and breathing. We conclude that 1) Ado A(1) receptors tonically inhibit fetal respiratory drive, 2) Ado A(2A) receptors tonically inhibit REM-like behavioral state, and 3) both Ado A(1) and A(2A) receptors mediate the depressant effects of Ado on REM and breathing.  相似文献   

18.
To determine whether endogenous opioids influence the fetal breathing response to CO2 we have investigated the effect of the opiate antagonist, naloxone on the incidence, rate, and amplitude of breathing movements during hypercapnia in fetal lambs in utero. In 20 experiments in six pregnant sheep (130-145 days gestation) hypercapnia was induced by giving the ewe 4-6% CO2-18% O2 in N2 to breathe for 60 min. After 30 min of hypercapnia either naloxone (13 experiments) or saline (7 experiments) was infused intravenously for the remaining 30 min. During hypercapnia breath amplitude increased from 5.8 +/- 0.5 to 9.1 +/- 1.2 mmHg (P less than 0.001), and infusion of naloxone was associated with a further significant increase to 15.7 +/- 1.2 mmHg (P less than 0.001). Naloxone had no effect on the incidence or rate of breathing movements during hypercapnia. After hypercapnia there was a significant decrease in the incidence of fetal breathing movements in the naloxone group (14.7 +/- 3.2%). Infusion of saline during hypercapnia had no effect on incidence, rate, or amplitude of fetal breathing movements. These results suggest that endogenous opioids act to suppress or limit breath amplitude during hypercapnia but do not affect rate or incidence of breathing movements.  相似文献   

19.
Simultaneous measurement of esophageal and tracheal pressures during an occluded inspiratory effort was used to assess the accuracy of the esophageal balloon for measuring pleural pressure in dogs. Esophageal balloons were inserted in five mongrel dogs, and an occlusion test was performed with the balloon tip 5, 10, 15, 20, and 25 cm above the esophageal sphincter; at lung volumes of functional residual capacity (FRC) and FRC + 600 ml; and in supine and right- and left-side lying postures. The protocol was repeated in paralyzed animals. This time the occlusion test was performed by injecting air into a plethysmograph to change the body surface pressure, simulating pressure changes produced by respiratory efforts in spontaneously breathing animals. In 47% of the tests in spontaneously breathing dogs, the slope of esophageal vs. tracheal pressure varied greater than 10% from unity. After paralysis the slope did not vary greater than 5% from unity under any circumstance. These data indicate that the poorer performance of the occlusion test in nonparalyzed dogs is due to active tension in the walls of the esophagus and stress induced in the intrathoracic soft tissues by the descent of the diaphragm during a breathing effort.  相似文献   

20.
We studied minute ventilation, breathing pattern, end-tidal CO2 partial pressure (PACO2), and tracheal occlusion pressure in cats anesthetized with ketamine (40 and 80 mg/kg) before and after CO2 inhalation. Before CO2 administration ventilation was reduced and PACO2 increased relative to unanesthetized cats at both ketamine doses. Breathing pattern was of the "apneustic" type, being characterized by 1) prolonged inspiratory duration and relatively short expiratory time and 2) markedly curvilinear (convex upward) inspiratory volume-time profile. The latter reflected a similar curvilinearity in the tracheal occlusion pressure waveform. During CO2 inhalation, the ventilatory response to CO2 was similar to that in unanesthetized cats in spite of a depressed tracheal occlusion pressure response. This discrepancy was due to the fact that in the presence of a convex upward inspiratory volume-time profile, the shortening of inspiratory duration with increasing CO2 results in a marked increase of mean inspiratory flow, and hence the ventilatory response to CO2 remains high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号