首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca2+ influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo . Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca2+/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein–α-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione- S -transferase pull-down assay. Thr286-autophosphorylated α-CaMKII or the autophosphorylation mimicking mutant, T286D-α-CaMKII, binds NR2B sequence independent of Ca2+/calmodulin unlike native wild-type α-CaMKII. We show enhancement of this binding by Ca2+/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca2+/calmodulin-independent binding whereas it allows the Ca2+/calmodulin-dependent binding of α-CaMKII in vitro . Similarly, the autonomously active mutants, T286D-α-CaMKII and F293E/N294D-α-CaMKII, exhibited Ca2+-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.  相似文献   

2.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

3.
Abstract A protein kinase from Dictyostelium discoideum which phosphorylates the synthetic peptide, calmodulin-dependent protein kinase substrate (CDPKS, amino acid sequence: PLRRTLSVAA) and is stimulated by Ca2+/calmodulin is described. This is the first report of a protein kinase with these characteristics in D. discoideum . The enzyme was partially purified by Q-Sepharose chromatography. The protein kinase is very labile, and rapidly loses Ca2+/calmodulin-dependence upon standing at 4°C, even in the presence of protease inhibitors, making further purification and characterisation difficult. In the active fractions, a 55 kDa polypeptide is labelled with [γ-32 P]ATP in vitro under conditions in which intramolecular rather than intermolecular reactions are favoured. The phosphorylation of this peptide is stimulated in the presence of Ca2+ and calmodulin but not Ca2+ alone. Ca2+/calmodulin-dependent stimulation is inhibited in the presence of the calmodulin antagonist, trifluoperazine (TFP). It is proposed that the 55 kDa polypeptide may represent the autophosphorylated form of the enzyme.  相似文献   

4.
Abstract: In fetal rat brain neurons, activation of voltage-dependent Na+ channels induced their own internalization, probably triggered by an increase in intracellular Na+ level. To investigate the role of phosphorylation in internalization, neurons were exposed to either activators or inhibitors of cyclic AMP- and cyclic GMP-dependent protein kinases, protein kinase C, and tyrosine kinase. None of the tested compounds mimicked or inhibited the effect of Na+ channel activation. An increase in intracellular Ca2+ concentration induced either by thapsigargin, a Ca2+-ATPase blocker, or by A23187, a Ca2+ ionophore, was unable to provoke Na+ channel internalization. However, Ca2+ seems to be necessary because both neurotoxin- and amphotericin B-induced Na+ channel internalizations were partially inhibited by BAPTA-AM. The selective inhibitor of Ca2+/calmodulin-dependent protein kinase II, KN-62, caused a dose-dependent inhibition of neurotoxin-induced internalization due to a blockade of channel activity but did not prevent amphotericin B-induced internalization. The rate of increase in Na+ channel density at the neuronal cell surface was similar before and after channel internalization, suggesting that recycling of internalized Na+ channels back to the cell surface was almost negligible. Pretreatment of the cells with an acidotropic agent such as chloroquine prevented Na+ channel internalization, indicating that an acidic endosomal/lysosomal compartment is involved in Na+ channel internalization in neurons.  相似文献   

5.
Abstract: The transduction pathways coupling muscarinic receptors to induction of fos and jun genes were investigated in neuroblastoma SH-SY5Y cells. Stimulation with carbachol induced expression of c- fos , fosB , c- jun , junB , and junD . This effect was abolished by pretreatment with atropine, indicating an involvement of muscarinic receptors. These genes were also induced by activation of protein kinase C with phorbol ester or by elevating the intracellular Ca2+ concentration with a Ca2+ ionophore. The Ca2+ effect was inhibited by KN-62, suggesting an induction through Ca2+/calmodulin-dependent kinase II. Inhibition of protein kinase C with GF109203X suppressed the carbachol-stimulated increase in mRNA levels of c- fos , fosB , and junB by ∼70% but had only minor effects on the expression of c- jun and junD . On the other hand, preincubation with KN-62 attenuated the carbachol-induced increase in c- jun and junD expression by 70% but had no effect on c- fos , fosB , and junB mRNA levels. Simultaneous inhibition of both protein kinase C and Ca2+/calmodulin-dependent kinase II completely abolished the carbachol-stimulated expression of c- jun and junD , but c- fos , fosB , and junB were still expressed to a certain extent under this condition. Comparison of the inhibitory effects of GF109203X and Gö 6976 suggests the involvement of classical protein kinase C isozymes in muscarinic receptor-stimulated expression of fos and jun genes. These results demonstrate that the muscarinic receptor-induced expression of individual fos and jun genes is regulated via different pathways, primarily protein kinase C or Ca2+/calmodulin-dependent kinase II.  相似文献   

6.
Abstract: Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 μ M . Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 μ M ) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis, CaMK 281-309 strongly inhibited kinase activity (IC50=0.2 μ M ). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

7.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

8.
Abstract: To clarify the regulatory mechanism of the N -methyl- d -aspartate (NMDA) receptor/channel by several protein kinases, we examined the effects of purified type II of protein kinase C (PKC-II), endogenous Ca2+/calmodulin-dependent protein kinase II (CaMK-II), and purified cyclic AMP-dependent protein kinase on NMDA receptor/ channel activity in the postsynaptic density (PSD) of rat brain. Purified PKC-II and endogenous CaMK-II catalyzed the phosphorylation of 80–200-kDa proteins in the PSD and l -glutamate-(or NMDA)-induced increase of (+)-5-[3H]methyl-10, 11-dihydro-5 H -dibenzo[a, d]cyclohepten-5, 10-imine maleate ([3H]MK-801; open channel blocker for NMDA receptor/channel) binding activity was significantly enhanced. However, the pretreatment of PKC-II-and CaMK-II-catalyzed phosphorylation did not change the binding activity of l -[3H]glutamate, cis -4-[3H](phospho-nomethyl)piperidine-2-carboxylate ([3H]CGS-19755; competitive NMDA receptor antagonist), [3H]glycine, α-[3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, or [3H]-kainate in the PSD. Pretreatment with PKC-II-and CaMK-II-catalyzed phosphorylation enhanced l -glutamate-induced increase of [3H]MK-801 binding additionally, although purified cyclic AMP-dependent protein kinase did not change l -glutamate-induced [3H]MK-801 binding. From these results, it is suggested that PKC-II and/or CaMK-II appears to induce the phosphorylation of the channel domain of the NMDA receptor/channel in the PSD and then cause an enhancement of Ca2+ influx through the channel.  相似文献   

9.
Protein kinases in plants have not been examined in detail, but protein phosphorylation has been shown to be essential for regulating plant growth via the signal transduction system. A Ca2+- and phospholipid-dependent protein kinase, possibly involved in the intracellular signal transduction system from rice leaves, was partially purified by sequential chromatography on DE52, Phenyl Superose and Superose 12. This protein kinase phosphorylated the substrate, histone III-S, in the presence of Ca2+ and phosphatidylserine. The apparent molecular mass of the Ca2+- and phosphatidylserine-dependent protein kinase (Ca2+/PS PK), determined by phosphorylation in SDS-polyacrylamide gel containing histone III-S, was 50 kDa. The protein kinase differed from Ca2+-dependent protein kinase (CDPK) in rice leaves in that Ca2+/PS PK showed phospholipid dependency and the molecular mass of Ca2+/PS PK exceeded that of CDPK. Investigations were carried out on changes in Ca2+/PS PK and CDPK activity in the cytosolic and membrane fractions during germination. The maximum activity of Ca2+/PS PK in the cytosolic fraction was observed before imbibition and that of CDPK in the membrane fraction was noted at 6 days following imbibition. Protein kinases are likely to regulate plant growth through protein phosphorylation.  相似文献   

10.
Abstract: The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+/Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+/Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+/Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+/Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+/Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion.  相似文献   

11.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

12.
Abstract: Annexin VI bound to >14 species of proteins in the whole homogenate of rat forebrain in a Ca2+/phosphatidylserine- or phosphatidic acid-dependent manner. When the subcellular fractions of rat forebrain were examined with a blot from a sodium dodecyl sulfate-polyacrylamide gel, each annexin VI-binding protein showed a different distribution, suggesting that annexin VI is a multifunctional protein. Of these proteins, the doublets of Mr 80,000 were enriched in the purified synaptic vesicles and were identified as synapsin I. Annexin VI bound to the head domain of synapsin I. When the binding of annexin VI to synapsin I was characterized in the native state, the affinity of the binding for Ca2+ ( K Ca) was 12.6 µ M , and the affinity for annexin VI ( K D) was ∼270 n M . Phosphorylation of synapsin I by cyclic AMP-dependent protein kinase and by Ca2+/calmodulin-dependent protein kinase II inhibited the annexin VI binding. The mode of the inhibition was different between the two kinases. These results indicate that annexin VI may modulate the function of synapsin I in a Ca2+- and phospholipid-dependent manner.  相似文献   

13.
Abstract: Rat hippocampal slices were exposed to conditions that simulate an ischemic insult, and the subcellular distribution and the enzymatic activity of Ca2+/calmodulin-dependent protein kinase II (CaM kinase) were monitored. Semiquantitative western blots using a monoclonal antibody to the 50-kDa α subunit showed that there was a significant redistribution of the enzyme from a supernatant to a pellet fraction after 10 min of an anoxic/aglycemic insult. No significant change in the total amount of CaM kinase enzyme was detected in the homogenates for up to 20 min of exposure to the insult. Ca2+/CaM-dependent enzyme activity did not significantly change in the pellet during the 20-min insult. Supernatant activity decreased throughout the insult. The persistence of Ca2+/CaM-dependent CaM kinase activity in the pellet fraction and the detected movement of enzyme from the supernatant to the pellet indicate that redistribution may be an important mechanism in regulating the cellular location of CaM kinase activity.  相似文献   

14.
Abstract: A possible role for protein kinases in the regulation of free cytosolic Ca2+ levels in nerve endings was investigated by testing the effect of several kinase inhibitors on the increase in cytosolic Ca2+ (monitored with the Ca2+-sensitive dye fura-2) induced by depolarization with 15 or 30 mM K+. The ability of various drugs to inhibit the cytosolic Ca2+ response appeared to correlate with their reported mechanism of action in inhibiting protein kinases. W-7 and trifluoperazine, drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the increase in cytosolic Ca2+ induced by high K+ depolarization, as was sphingosine, a drug that inhibits protein kinase C by binding to the regulatory site, but which also inhibits calcium/calmodulin kinase. On the other hand, drugs that inhibit protein kinases by binding to the catalytic site, such as H-7 (1 m/W ), staurosporine (1μ M ), and K252a(1μ M ), were ineffective. Activation of protein kinase C, which is blocked by each of these drugs, does not appear to be essential to the maintenance of elevated cytosolic Ca2+ in depolarized synaptosomes. All of the drugs, including sphingosine, that functionally inhibit the depolarization-induced elevation in cytosolic Ca2+ have in common the ability to bind to calmodulin. Because the drugs that inhibit protein kinases by competing with ATP binding at the active catalytic site did not block the response in this system, we suggest that a calmodulin or a calmodulin-like binding site participates in the regulation of Ca2+ increases after depolarization.  相似文献   

15.
Abstract: Soluble and membrane fractions of bovine adrenal medulla contain several substrates for the Ca2+/ phospholipid-dependent and cyclic AMP-dependent protein kinases. The phosphorylation of soluble proteins (36 and 17.7 kilodaltons) and a membrane protein (22.5 kilo-daltons) showed an absolute requirement for the presence of both Ca2+ and phosphatidylserine; other substrates showed less stringent phosphorylation requirements and many of these proteins were specific for each of the protein kinases. The Ca2+/phospholipid-dependent phosphorylation was rapid, with effects seen as early as at 30 s of incubation. Measurement of enzyme activities with histone HI as an exogenous substrate demonstrated that the Ca2+/phospholipid-dependent protein kinase was equally distributed between the soluble and membrane fractions whereas the cyclic AMP-dependent enzyme was predominantly membrane-bound in adrenal medulla and chromaffin cells. The activity of the soluble Ca2+/phos-pholipid-dependent protein kinase of adrenal medulla was found to be about 50% of the enzyme level present in rat brain, a tissue previously shown to contain a very high enzyme activity. These results suggest a prominent role for the Ca2+/phospholipid-dependent protein kinase in chromaffin cell function.  相似文献   

16.
Abstract: The nervous tissue-specific protein B-50 (GAP-43), which has been implicated in the regulation of neurotransmitter release, is a member of a family of atypical calmodulin-binding proteins. To investigate to what extent calmodulin and the interaction between B-50 and calmodulin are involved in the mechanism of Ca2+-induced noradrenaline release, we introduced polyclonal anti-calmodulin antibodies, calmodulin, and the calmodulin antagonists trifluoperazine, W-7, calmidazolium, and polymyxin B into streptolysin-O-permeated synaptosomes prepared from rat cerebral cortex. Anti-calmodulin antibodies, which inhibited Ca2+/calmodulin-dependent protein kinase II autophosphorylation and calcineurin phosphatase activity, decreased Ca2+-induced noradrenaline release from permeated synaptosomes. Exogenous calmodulin failed to modulate release, indicating that if calmodulin is required for vesicle fusion it is still present in sufficient amounts in permeated synaptosomes. Although trifluoperazine, W-7, and calmidazolium inhibited Ca2+-induced release, they also strongly increased basal release. Polymyxin B potently inhibited Ca2+-induced noradrenaline release without affecting basal release. It is interesting that polymyxin B was also the only antagonist affecting the interaction between B-50 and calmodulin, thus lending further support to the hypothesis that B-50 serves as a local Ca2+-sensitive calmodulin store underneath the plasma membrane in the mechanism of neurotransmitter release. We conclude that calmodulin plays an important role in vesicular noradrenaline release, probably by activating Ca2+/calmodulin-dependent enzymes involved in the regulation of one or more steps in the release mechanism.  相似文献   

17.
Abstract: The microtubule-associated protein τ plays an important role in the dynamics of microtubule assembly necessary for axonal growth and neurite plasticity. Ischemia disrupts the neuronal cytoskeleton both by promoting proteolysis of its components and by affecting kinase and phosphatase activities that alter its assembly. In this study the effect of ischemia and reperfusion on the expression and phosphorylation of τ was examined in a reversible model of spinal cord ischemia in rabbits. τ was found to be dephosphorylated in response to ischemia with a time course that closely matched the production of permanent paraplegia. Dephosphorylation of τ was limited to the caudal lumbar spinal cord. In a similar manner, Ca2+/calmodulin-dependent kinase II activity was reduced only in the ischemic region. Thus, dephosphorylation of τ is an early marker of ischemia as is the rapid loss of Ca2+/calmodulin-dependent kinase II activity, τ, however, was rephosphorylated rapidly during reperfusion at site(s) that cause a reduction in its electrophoretic mobility regardless of the neurological outcome. Alterations in phosphorylation or degradation of τ may affect microtubule stability, possibly contributing to disruption of axonal transport but also facilitating neurite plasticity in a regenerative response.  相似文献   

18.
Abstract: KN-62, an inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II), inhibited significantly catecholamine secretion and tyrosine hydroxylase activity stimulated by acetylcholine in cultured bovine adrenal medullary cells. KN-62, however, showed an additional inhibitory effect on acetylcholine-induced 45Ca2+ influx, which is essential for functional responses. Carbachol-stimulated 22Na+ influx, veratridine-induced 22Na+ influx, and 56 m M K+-evoked 45Ca2+ influx were also attenuated by KN-62. Inhibitions by KN-62 of these ion influxes were correlated closely with those of catecholamine secretion. KN-04, which is a structural analogue of KN-62 but does not inhibit CaM kinase II activity, elicited inhibitory effects on the three kinds of stimulant-evoked ion influxes with an inhibitory potency similar to KN-62. These results suggest that KN-62 inhibits catecholamine secretion and tyrosine hydroxylase activation due to mainly its ion channel blockade on the plasma membrane rather than the inhibition of CaM kinase II activity in the cells.  相似文献   

19.
A 40000 g supernatant fraction from extracts of germinating wheat ( Triticum turgidum Desf. cv. Edmore) endosperm contains protein kinase activity that phosphorylates several endogenous proteins. In vitro incorporation of radiolabel from [32P]-ATP into phosphoproteins was maximal in the presence of 1 m M CaCl2 and 5 m M MgCl2Ca2+ at micromolar concentrations greatly stimulated the phosphorylation of 49 and 47 kDa polypeptides and also inhibited the phosphorylation of a few specific polypeptides. The phosphorylation of the 49 and 47 kDa polypeptides was present at 2 days after seed germination and was maximal at 8 days. Quantitative protein changes were also detected during the seed germination, but differences could not be correlated with changes in protein phosphorylation. Phosphoamino acid analysis by two dimensional thin-layer electrophoresis showed that the Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 kDa polypeptide. Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 KDa polypeptide. Ca2+ dependent protein phosphorylktion was inhibited by phenothiazine-derived drugs. Addition of S-adenosylmethionine to the in vitro phosphorylation reaction specifically inhibited the Ca2+-dependent protein phosphorylation.  相似文献   

20.
Abstract: Phosphorylation of myelin basic protein (MBP) in rat or rabbit brain myelin was markedly stimulated by Ca2+, and this reaction was not essentially augmented by exogenous phosphatidylserine or calmodulin or both. Solubilization of myelin with 0.4% Triton X-100 plus 4 m M EGTA, with or without further fractionation, showed that Ca2+-dependent phosphorylation of MBP required phosphatidylserine, but not calmodulin. DEAE-cellulose chromatography of solubilized myelin revealed a pronounced peak of protein kinase activity stimulated by a combination of Ca2+ and phosphatidylserine; a protein kinase stimulated by Ca2+ plus calmodulin was not detected. These findings clearly indicate an involvement of phospholipid-sensitive Ca2+-dependent protein kinase in phosphorylation of brain MBP, although a possible role for the calmodulin-sensitive species of Ca2+-dependent protein kinase in this reaction could not be excluded or established. Phosphorylation of MBP in solubilized rat myelin catalyzed by the phospholipid-sensitive enzyme was inhibited by adriamycin, palmitoylcarnitine, trifluoperazine, melittin, polymyxin B, and N -(6-aminohexyl)-5-chloro-l-naphthalenesulfonamide (W–7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号