共查询到20条相似文献,搜索用时 8 毫秒
1.
Witt CC Gerull B Davies MJ Centner T Linke WA Thierfelder L 《The Journal of biological chemistry》2001,276(7):5353-5359
Myosin-binding protein-C (MyBP-C) is a component of all striated-muscle sarcomeres, with a well established structural role and a possible function for force regulation. Multiple mutations within the gene for cardiac MyBP-C, one of three known isoforms, have been linked to familial hypertrophic cardiomyopathy. Here we generated a knock-in mouse model that carries N-terminal-shortened cardiac MyBP-C. The mutant protein was designed to have a similar size as the skeletal MyBP-C isoforms, whereas known myosin and titin binding sites as well as the phosphorylatable MyBP-C motif were not altered. We have shown that mutant cardiac MyBP-C is readily incorporated into the sarcomeres of both heterozygous and homozygous animals and can still be phosphorylated by cAMP-dependent protein kinase. Although histological characterization of wild-type and mutant hearts did not reveal obvious differences in phenotype, left ventricular fibers from homozygous mutant mice exhibited an increased Ca(2+) sensitivity of force development, particularly at lower Ca(2+) concentrations, whereas maximal active force levels remained unchanged. The results allow us to propose a model of how cMyBP-C may affect myosin-head mobility and to rationalize why N-terminal mutations of the protein in some cases of familial hypertrophic cardiomyopathy could lead to a hypercontractile state. 相似文献
2.
Patel JR Fitzsimons DP Buck SH Muthuchamy M Wieczorek DF Moss RL 《American journal of physiology. Heart and circulatory physiology》2001,280(6):H2732-H2739
In myocardium, protein kinase A (PKA) is known to phosphorylate troponin I (TnI) and myosin-binding protein-C (MyBP-C). Here, we used skinned myocardial preparations from nontransgenic (NTG) mouse hearts expressing 100% alpha-tropomyosin (alpha-Tm) to examine the effects of phosphorylated TnI and MyBP-C on Ca2+ sensitivity of force and the rate constant of force redevelopment (k(tr)). Experiments were also done using transgenic (TG) myocardium expressing approximately 60% beta-Tm to test the idea that the alpha-Tm isoform is required to observe the mechanical effects of PKA phosphorylation. Compared with NTG myocardium, TG myocardium exhibited greater Ca2+ sensitivity of force and developed submaximal forces at faster rates. Treatment with PKA reduced Ca2+ sensitivity of force in NTG and TG myocardium, had no effect on maximum k(tr) in either NTG or TG myocardium, and increased the rates of submaximal force development in both kinds of myocardium. These results show that PKA-mediated phosphorylation of myofibrillar proteins significantly alters the static and dynamic mechanical properties of myocardium, and these effects occur regardless of the type of Tm expressed. 相似文献
3.
Colson BA Bekyarova T Fitzsimons DP Irving TC Moss RL 《Journal of molecular biology》2007,367(1):36-41
Myosin binding protein-C (cMyBP-C) is a thick filament accessory protein, which in cardiac muscle functions to regulate the kinetics of cross-bridge interaction with actin; however, the underlying mechanism is not yet understood. To explore the structural basis for cMyBP-C function, we used synchrotron low-angle X-ray diffraction to measure interfilament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned myocardial preparations isolated from wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)). In relaxed myocardium, ablation of cMyBP-C appeared to result in radial displacement of cross-bridges away from the thick filaments, as there was a significant increase ( approximately 30%) in the I(11)/I(10) ratio for cMyBP-C(-/-) (0.37+/-0.03) myocardium as compared to WT (0.28+/-0.01). While lattice spacing tended to be greater in cMyBP-C(-/-) myocardium (44.18+/-0.68 nm) when compared to WT (42.95+/-0.43 nm), the difference was not statistically significant. Furthermore, liquid-like disorder in the myofilament lattice was significantly greater ( approximately 40% greater) in cMyBP-C(-/-) myocardium as compared to WT. These results are consistent with our working hypothesis that cMyBP-C normally acts to tether myosin cross-bridges nearer to the thick filament backbone, thereby reducing the likelihood of cross-bridge binding to actin and limiting cooperative activation of the thin filament. 相似文献
4.
Sato N Kawakami T Nakayama A Suzuki H Kasahara H Obinata T 《Molecular biology of the cell》2003,14(8):3180-3191
Cardiac myosin-binding protein-C (MyBP-C), also known as C-protein, is one of the major myosin-binding proteins localizing at A-bands. MyBP-C has three isoforms encoded by three distinct genes: fast-skeletal, slow-skeletal, and cardiac type. Herein, we are reporting a novel alternative spliced form of cardiac MyBP-C, MyBP-C(+), which includes an extra 30 nucleotides, encoding 10 amino acids in the carboxyl-terminal connectin/titin binding region. This alternative spliced form of MyBP-C(+) has a markedly decreased binding affinity to myosin filaments and connectin/titin in vitro and does not localize to A-bands in cardiac myocytes. When MyBP-C(+) was expressed in chicken cardiac myocytes, sarcomere structure was markedly disorganized, suggesting it has possible dominant negative effects on sarcomere organization. Expression of MyBP-C(+) is hardly detected in ventricles through cardiac development, but its expression gradually increases in atria and becomes the dominant form after 6 mo of age. The present study demonstrates an age-induced new isoform of cardiac MyBP-C harboring possible dominant negative effects on sarcomere assembly. 相似文献
5.
Demeestere I Streiff AK Suzuki J Al-Khabouri S Mahrous E Tan SL Clarke HJ 《Biology of reproduction》2012,87(1):3, 1-3,11
During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg. 相似文献
6.
Rohit R. Singh James W. McNamara Sakthivel Sadayappan 《The Journal of biological chemistry》2021,297(1)
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future. 相似文献
7.
cMyBP-C [cardiac (MyBP-C) myosin-binding protein-C)] is a sarcomeric protein involved both in thick filament structure and in the regulation of contractility. It is composed of eight IgI-like and three fibronectin-3-like domains (termed C0-C10). Mutations in the gene encoding cMyBP-C are a principal cause of HCM (hypertrophic cardiomyopathy). cMyBP-C binds to the LMM (light meromyosin) portion of the myosin rod via its C-terminal domain, C10. We investigated this interaction in detail to determine whether HCM mutations in beta myosin heavy chain located within the LMM portion alter the binding of cMyBP-C, and to define the precise region of LMM that binds C10 to aid in developing models of the arrangement of MyBP-C on the thick filament. In co-sedimentation experiments recombinant C10 bound full-length LMM with a K(d) of 3.52 microM and at a stoichiometry of 1.14 C10 per LMM. C10 was also shown to bind with similar affinity to LMM containing either the HCM mutations A1379T or S1776G, suggesting that these HCM mutations do not perturb C10 binding. Using a range of N-terminally truncated LMM fragments, the cMyBP-C-binding site on LMM was shown to lie between residues 1554 and 1581. Since it had been reported previously that acidic residues on myosin mediate the C10 interaction, three clusters of acidic amino acids (Glu1554/Glu1555, Glu1571/Glu1573 and Glu1578/Asp1580/Glu1581/Glu1582) were mutated in full-length LMM and the proteins tested for C10 binding. No effect of these mutations on C10 binding was however detected. We interpret our results with respect to the localization of the proposed trimeric collar on the thick filament. 相似文献
8.
Stelzer JE Patel JR Olsson MC Fitzsimons DP Leinwand LA Moss RL 《American journal of physiology. Heart and circulatory physiology》2004,287(4):H1756-H1761
Transgenic mice expressing an allele of cardiac troponin T (cTnT) with a COOH-terminal truncation (cTnT(trunc)) exhibit severe diastolic and mild systolic dysfunction. We tested the hypothesis that contractile dysfunction in myocardium expressing low levels of cTnT(trunc) (i.e., <5%) is due to slowed cross-bridge kinetics and reduced thin filament activation as a consequence of reduced cross-bridge binding. We measured the Ca(2+) sensitivity of force development [pCa for half-maximal tension generation (pCa(50))] and the rate constant of force redevelopment (k(tr)) in cTnT(trunc) and wild-type (WT) skinned myocardium both in the absence and in the presence of a strong-binding, non-force-generating derivative of myosin subfragment-1 (NEM-S1). Compared with WT mice, cTnT(trunc) mice exhibited greater pCa(50), reduced steepness of the force-pCa relationship [Hill coefficient (n(H))], and faster k(tr) at submaximal Ca(2+) concentration ([Ca(2+)]), i.e., reduced activation dependence of k(tr). Treatment with NEM-S1 elicited similar increases in pCa(50) and similar reductions in n(H) in WT and cTnT(trunc) myocardium but elicited greater increases in k(tr) at submaximal activation in cTnT(trunc) myocardium. Contrary to our initial hypothesis, cTnT(trunc) appears to enhance thin filament activation in myocardium, which is manifested as significant increases in Ca(2+)-activated force and the rate of cross-bridge attachment at submaximal [Ca(2+)]. Although these mechanisms would not be expected to depress systolic function per se in cTnT(trunc) hearts, they would account for slowed rates of myocardial relaxation during early diastole. 相似文献
9.
Xu Y Delfín DA Rafael-Fortney JA Janssen PM 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(2):512-519
Lengthening-contractions exert eccentric stress on myofibers in normal myocardium. In congestive heart failure caused by a variety of diseases, the impact of lengthening-contractions of myocardium likely becomes more prevalent and severe. The present study introduces a method to investigate the role of stretching imposed by repetitive lengthening-contractions in myocardium under near-physiological conditions. By exerting various stretch-release ramps while the muscle is contracting, consecutive lengthening-contractions and their potential detrimental effect on cardiac function can be studied. We tested our model and hypothesis in age-matched (young and adult) mdx and wild-type mouse right ventricular trabeculae. These linear and ultrathin muscles possess all major cardiac cell types, and their contractile behavior very closely mimics that of the whole myocardium. In the first group of experiments, 10 lengthening-contractions at various magnitudes of stretch were performed in trabeculae from 10-wk-old mdx and wild-type mice. In the second group, 100 lengthening-contractions at various magnitudes were conducted in trabeculae from 10- and 20-wk-old mice. The peak isometric active developed tension (F(dev), in mN/mm(2)) and kinetic parameters time to peak tension (TTP, in ms) and time from peak tension to half-relaxation (RT50, in ms) were measured. Our results indicate lengthening-contractions significantly impact contractile behavior, and that dystrophin-deficient myocardium in mdx mice is significantly more susceptible to these damaging lengthening-contractions. The results indicate that lengthening-contractions in intact myocardium can be used in vitro to study this emerging contributor to cardiomyopathy. 相似文献
10.
Intracellular calcium related to force development in twitch contraction of mammalian myocardium 总被引:3,自引:0,他引:3
To characterize the relationship between force production and Ca2+ occupancy of troponin C, investigators have related peak intracellular Ca2+, measured with a variety of Ca2(+)-indicators, and peak force during twitches. Inherent in the force-[Ca2+] relationship is the responsiveness of the myofilaments to Ca2+ which can be altered by different pharmacological manipulations. In this study we compared the force-[Ca2+] relationship obtained in aequorin-injected papillary muscles and saponin skinned trabeculae from control, right ventricular pressure-overload hypertrophy (POH), and hyperthyroid ferret hearts. In POH, the twitch and [Ca2+]i transient were prolonged as compared to control. Force-[Ca2+] relationships from skinned fiber preparations were superimposable between control and POH. The peak force-peak [Ca2+]i relationship in intact muscles from POH was shifted to the left as compared to control. In hyperthyroid hearts, the twitch and [Ca2+]i were abbreviated. Force-[Ca2+]i relationships from skinned fiber preparations were superimposable between control and thyrotoxic hearts. The peak force-peak [Ca2+]i relationship in intact muscles from hyperthyroid hearts was shifted to the right as compared to control. Our findings indicate that time course changes in the calcium transient artifacturally shift the peak force-peak calcium relationship in a predictable manner. Therefore, this relationship can not be used to address changes at the level of the myofilaments as previously suggested. 相似文献
11.
Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1-CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent K(m) value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis. 相似文献
12.
Cardiac myosin-binding protein-C (cMyBP-C) is a thick-filament-associated protein that performs regulatory and structural roles within cardiac sarcomeres. It is a member of the immunoglobulin (Ig) superfamily of proteins consisting of eight Ig- and three fibronectin (FNIII)-like domains, along with a unique regulatory sequence referred to as the M-domain, whose structure is unknown. Domains near the C-terminus of cMyBP-C bind tightly to myosin and mediate the association of cMyBP-C with thick (myosin-containing) filaments, whereas N-terminal domains, including the regulatory M-domain, bind reversibly to myosin S2 and/or actin. The ability of MyBP-C to bind to both myosin and actin raises the possibility that cMyBP-C cross-links myosin molecules within the thick filament and/or cross-links myosin and thin (actin-containing) filaments together. In either scenario, cMyBP-C could be under mechanical strain. However, the physical properties of cMyBP-C and its behavior under load are completely unknown. Here, we investigated the mechanical properties of recombinant baculovirus-expressed cMyBP-C using atomic force microscopy to assess the stability of individual cMyBP-C molecules in response to stretch. Force-extension curves showed the presence of long extensible segment(s) that became stretched before the unfolding of individual Ig and FNIII domains, which were evident as sawtooth peaks in force spectra. The forces required to unfold the Ig/FNIII domains at a stretch rate of 500 nm/s increased monotonically from ∼30 to ∼150 pN, suggesting a mechanical hierarchy among the different Ig/FNIII domains. Additional experiments using smaller recombinant proteins showed that the regulatory M-domain lacks significant secondary or tertiary structure and is likely an intrinsically disordered region of cMyBP-C. Together, these data indicate that cMyBP-C exhibits complex mechanical behavior under load and contains multiple domains with distinct mechanical properties. 相似文献
13.
The myosin filaments of striated muscle contain a family of enigmatic myosin-binding proteins (MyBP), MyBP-C and MyBP-H. These modular proteins of the intracellular immunoglobulin superfamily contain unique domains near their N termini. The N-terminal domain of cardiac MyBP-C, the MyBP-C motif, contains additional phosphorylation sites and may regulate contraction in a phosphorylation dependent way. In contrast to the C terminus, which binds to the light meromyosin portion of the myosin rod, the interactions of this domain are unknown. We demonstrate that fragments of MyBP-C containing the MyBP-C motif localise to the sarcomeric A-band in cardiomyocytes and isolated myofibrils, without affecting sarcomere structure. The binding site for the MyBP-C motif resides in the N-terminal 126 residues of the S2 segment of the myosin rod. In this region, several mutations in beta-myosin are associated with FHC; however, their molecular implications remained unclear. We show that two representative FHC mutations in beta-myosin S2, R870H and E924K, drastically reduce MyBP-C binding (Kd approximately 60 microM for R870H compared with a Kd of approximately 5 microM for the wild-type) down to undetectable levels (E924K). These mutations do not affect the coiled-coil structure of myosin. We suggest that the regulatory function of MyBP-C is mediated by the interaction with S2, and that mutations in beta-myosin S2 may act by altering the interactions with MyBP-C. 相似文献
14.
The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE). Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2) at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95) and receptor proteins (GluR2 and GABA(A)Rγ2) of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus. 相似文献
15.
Palmer BM McConnell BK Li GH Seidman CE Seidman JG Irving TC Alpert NR Maughan DW 《Molecular and cellular biochemistry》2004,263(1-2):73-80
The role of cardiac myosin binding protein-C (MyBP-C) on myocardial stiffness was examined in skinned papillary muscles of wild-type (WT(+/+)) and homozygous truncated cardiac MyBP-C (MyBP-C(t/t) male mice. No MyBP-C was detected by gel electrophoresis or by Western blots in the MyBP-C(t/t) myocardium. Rigor-bridge dependent myofilament stiffness, i.e., rigor minus relaxed stiffness, in the MyBP-C(t/t) myocardium (281 +/- 44 kN/m2) was 44% that in WT(+/+) (633 +/- 141 kN/m2). The center-to-center spacing between thick filaments as determined by X-ray diffraction in MyBP-C(t/t) (45.0 +/- 1.2 nm) was not significantly different from that in WT(+/+) (43.2 +/- 0.9 nm). The fraction of cross-sectional area comprised of myofibrils, as determined by electron microscopy, was reduced in the MyBP-C(t/t) (39.9%) by 10% compared to WT(+/+) (44.5%). These data suggest that the 56% reduction in rigor-bridge dependent stiffness of the skinned MyBP-C(t/t) myocardium could not be due solely to a 10% reduction in the number of thick filaments per cross-sectional area and must also be due to approximately 50% reduction in the stiffness of the rigor-bridge attached thick filaments lacking MyBP-C. 相似文献
16.
Reduced cross-bridge dependent stiffness of skinned myocardium from mice lacking cardiac myosin binding protein-C 总被引:1,自引:0,他引:1
Palmer Bradley M. McConnell Bradley K. Li Guo Hua Seidman Christine E. Seidman J.G. Irving Thomas C. Alpert Norman R. Maughan David W. 《Molecular and cellular biochemistry》2004,263(1):73-80
The role of cardiac myosin binding protein-C (MyBP-C) on myocardial stiffness was examined in skinned papillary muscles of wild-type (WT+/+) and homozygous truncated cardiac MyBP-C (MyBP-Ct/t) male mice. No MyBP-C was detected by gel electrophoresis or by Western blots in the MyBP-Ct/t myocardium. Rigor-bridge dependent myofilament stiffness, i.e., rigor minus relaxed stiffness, in the MyBP-Ct/t myocardium (281 ± 44 kN/m2) was 44% that in WT+/+ (633 ± 141 kN/m2). The center-to-center spacing between thick filaments as determined by X-ray diffraction in MyBP-Ct/t (45.0 ± 1.2 nm) was not significantly different from that in WT+/+ (43.2 ± 0.9 nm). The fraction of cross-sectional area comprised of myofibrils, as determined by electron microscopy, was reduced in the MyBP-Ct/t (39.9%) by 10% compared to WT+/+ (44.5%). These data suggest that the 56% reduction in rigor-bridge dependent stiffness of the skinned MyBP-Ct/t myocardium could not be due solely to a 10% reduction in the number of thick filaments per cross-sectional area and must also be due to approximately 50% reduction in the stiffness of the rigor-bridge attached thick filaments lacking MyBP-C. (Mol Cell Biochem 263: 73–80, 2004) 相似文献
17.
Changes in force and stiffness during contractions of mouse extensor digitorum longus and soleus muscles were measured over a range of extracellular pH from 6.4 to 7.4. Muscle stiffness was measured using small amplitude (less than 0.1% of muscle length), high frequency (1.5 kHz) oscillations in length. Twitch force was not significantly affected by changes in pH, but the peak force during repetitive stimulation (2, 3, and 20 pulses) was decreased significantly as the pH was reduced. Changes in muscle stiffness with pH were in the same direction, but smaller in extent. If the number of attached cross-bridges in the muscle can be determined from the measurement of small amplitude, high frequency muscle stiffness, then these findings suggest that (a) the number of cross-bridges between thick and thin filaments declines in low pH and (b) the average force per cross-bridge also declines in low pH. The decline in force per cross-bridge could arise from a reduction in the ability of cross-bridges to generate force during their state of active force production and (or) in an increased percentage of bonds in a low force, "rigor" state. 相似文献
18.
Increasing levels of global trade and intercontinental travel have been cited as the major causes of biological invasion. However, indirect factors such as economic development that affect the intensity of invasion have not been quantitatively explored. Herein, using principal factor analysis, we investigated the relationship between biological invasion and economic development together with climatic information for China from the 1970s to present. We demonstrate that the increase in biological invasion is coincident with the rapid economic development that has occurred in China over the past three decades. The results indicate that the geographic prevalence of invasive species varies substantially on the provincial scale, but can be surprisingly well predicted using the combination of economic development (R(2) = 0.378) and climatic factors (R(2) = 0.347). Economic factors are proven to be at least equal to if not more determinant of the occurrence of invasive species than climatic factors. International travel and trade are shown to have played a less significant role in accounting for the intensity of biological invasion in China. Our results demonstrate that more attention should be paid to economic factors to improve the understanding, prediction and management of biological invasions. 相似文献
19.