首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel quantitative PCR (QPCR) approach, which combines competitive PCR with constant-denaturant capillary electrophoresis (CDCE), was adapted for enumerating microbial cells in environmental samples using the marine nanoflagellate Cafeteria roenbergensis as a model organism. Competitive PCR has been used successfully for quantification of DNA in environmental samples. However, this technique is labor intensive, and its accuracy is dependent on an internal competitor, which must possess the same amplification efficiency as the target yet can be easily discriminated from the target DNA. The use of CDCE circumvented these problems, as its high resolution permitted the use of an internal competitor which differed from the target DNA fragment by a single base and thus ensured that both sequences could be amplified with equal efficiency. The sensitivity of CDCE also enabled specific and precise detection of sequences over a broad range of concentrations. The combined competitive QPCR and CDCE approach accurately enumerated C. roenbergensis cells in eutrophic, coastal seawater at abundances ranging from approximately 10 to 104 cells ml−1. The QPCR cell estimates were confirmed by fluorescent in situ hybridization counts, but estimates of samples with <50 cells ml−1 by QPCR were less variable. This novel approach extends the usefulness of competitive QPCR by demonstrating its ability to reliably enumerate microorganisms at a range of environmentally relevant cell concentrations in complex aquatic samples.  相似文献   

2.
A competitive polymerase chain reaction assay targeting the 16S rDNA was developed for quantitating the rumen bacterium Butyrivibrio fibrisolvens OB156. A competitor DNA, serving as an internal control in the competitive polymerase chain reaction reaction, was constructed by polymerase chain reaction using a looped oligo longer than the normal primer. Coamplification of the target DNA with known amounts of the competitor DNA allowed quantitation of the target DNA in both pure culture and mixed culture systems, where minimum quantifiable level of OB156 was 1.7x10(2) and 5.6x10(4) cells, respectively. When an erythromycin-resistant recombinant derived from OB156 was inoculated into a rumen fluid culture, its numbers decreased with time. The rate of decrease measured by the competitive polymerase chain reaction assay was much slower than the rate determined by culture enumeration using erythromycin selection. The competitive polymerase chain reaction assay also showed 48 h persistence of the recombinant at 10(4) ml(-1) even after disappearance of culturable recombinant, suggesting maintenance of the target DNA from uncultivable cells. In an in vivo tracking trial, the recombinant became undetectable within 72 h with either assay, indicating rapid hydrolysis and/or outflow of the cells from the rumen.  相似文献   

3.
Mutations cause or influence the prevalence of many diseases. In human tissues, somatic point mutations have been observed at fractions at or below 4/10,000 and 5/100,000 in mitochondrial and nuclear DNA, respectively. In human populations, fractions for the multiple alleles that code for recessive deleterious syndromes are not expected to exceed 5 x 10(-4). Both nuclear and mitochondrial point mutations have been measured in human cells and tissues at fractions approaching 10(-6) using constant denaturant capillary electrophoresis (CDCE) coupled with high-fidelity PCR (hifiPCR). However, this approach is only applicable to those target sequences (approximately 100 bp) juxtaposed with a 'clamp', a higher-melting-temperature sequence, in genomic DNA; such naturally clamped targets represent approximately 9% of the human genome. To open up most of the human genome to rare point-mutational analysis, a high-efficiency DNA ligation procedure was recently developed so that a clamp could be attached to any target of interest. We coupled this ligation procedure with prior CDCE/hifiPCR and achieved a sensitivity of 2 x 10(-5) in human cells for the first time using an externally attached clamp. At this sensitivity, somatic mutations, each representing an anatomically distinct cluster of cells (turnover unit) derived from a mutant stem cell, may be detected in a series of tissue samples, each containing as many as 5 x 10(4) turnover units. Additionally, rare inherited mutations may be scanned in pooled DNA samples, each derived from as many as 10(5) persons.  相似文献   

4.
We have developed a simple quantitative method for specific nucleic acid sequences without using calibration curves. This method is based on the combined use of competitive polymerase chain reaction (PCR) and fluorescence quenching. We amplified a gene of interest (target) from DNA samples and an internal standard (competitor) with a sequence-specific fluorescent probe using PCR and measured the fluorescence intensities before and after PCR. The fluorescence of the probe is quenched on hybridization with the target by guanine bases, whereas the fluorescence is not quenched on hybridization with the competitor. Therefore, quench rate (i.e., fluorescence intensity after PCR divided by fluorescence intensity before PCR) is always proportional to the ratio of the target to the competitor. Consequently, we can calculate the ratio from quench rate without using a calibration curve and then calculate the initial copy number of the target from the ratio and the initial copy number of the competitor. We successfully quantified the copy number of a recombinant DNA of genetically modified (GM) soybean and estimated the GM soybean contents. This method will be particularly useful for rapid field tests of the specific gene contamination in samples.  相似文献   

5.
The fluorogenic probe assay, competitive polymerase chain reaction (PCR) and co-extraction with internal standard cells were combined to develop a rapid, sensitive, and accurate quantification method for the copy number of a target carbazole 1,9a-dioxygenase gene (carAa) and the cell number of Pseudomonas sp. strain CA10. The internal standard DNA was modified by replacement of a 20-bp long region with one for binding a specific probe in fluorogenic PCR (TaqMan). The resultant DNA fragment was similar to the corresponding region of the intact carAa gene in terms of G+C content. When used as a competitor in the PCR reaction, the internal standard DNA was distinguishable from the target carAa gene by two specific fluorogenic probes with different fluorescence labels, and was automatically detected in a single tube using the ABI7700 sequence detection system. To minimize variations in the efficiency of cell lysis and DNA extraction between the samples, the co-extraction method was combined. A mini-transposon was used to introduce competitor DNA into the genome of other pseudomonads, and the resultant construct was used as the standard cell. After the addition of a fixed amount of the internal standard cells to soil samples, total DNA was extracted (co-extraction). Using this method, the copy number of the carAa gene and the cell number of strain CA10 in soil samples could be quantified rapidly.  相似文献   

6.
A paucity of direct studies of marine invertebrate larval dispersal motivated the development of a high-throughput method for identification and quantification of pinto abalone (Haliotis kamtschatkana) larvae in seawater. DNA extracted from sample retentate provided template to screen for species-specific cytochrome oxidase I (COI) mitochondrial DNA sequence via quantitative PCR (QPCR) technology. Primers and a dual-labeled probe were designed and used to identify and quantify DNA from the target species in blind tests of unknown samples alongside a standard template quantity series. Quantity estimates derived from QPCR standard curves were verified via direct enumeration of larvae using light microscopy. Multiplex reactions containing an internal positive control minimized underestimation of quantity and false negatives via partial or full PCR inhibition, respectively. Planned controlled field release and collection experiments to examine larval dispersion patterns via sampling over short and long postrelease times anticipate similar QPCR assays for other marine invertebrate species to aid investigations of larval dispersal in the marine environment.  相似文献   

7.
Rapid competitive PCR using melting curve analysis for DNA quantification.   总被引:5,自引:0,他引:5  
S Al-Robaiy  S Rupf  K Eschrich 《BioTechniques》2001,31(6):1382-6, 1388
A rapid competitive PCR method was developed to quantify DNA on the LightCycler. It rests on the quantitative information contained in the melting curves obtained after amplification in the presence of SYBR Green I. Specific hybridization probes are not required. Heterologous internal standards sharing the same primer binding sites and having different melting temperatures to the natural PCR products were used as competitors. After a co-amplification of known amounts of the competitor with a DNA-containing sample, the target DNA can be quantified from the ratio of the melting peak areas of competitor and target products. The method was developed using 16S rDNA fragments from Streptococcus mutans and E. coli and tested against existing PCR-based DNA quantification procedures. While kinetic analysis of real-time PCR is well established for the quantification of pure nucleic acids, competitive PCR on the LightCycler based on an internal standardization was found to represent a rapid and sensitive alternative DNA quantification method for analysis of complex biological samples that may contain PCR inhibitors.  相似文献   

8.
Pfiesteria piscicida is a heterotrophic dinoflagellate widely distributed along the middle Atlantic shore of the United States and associated with fish kills in the Neuse River (North Carolina) and the Chesapeake Bay (Maryland and Virginia). We constructed a genomic DNA library from clonally cultured P. piscicida and characterized the nontranscribed spacer (NTS), small subunit, internal transcribed spacer 1 (ITS1), 5.8S region, ITS2, and large subunit of the rRNA gene cluster. Based on the P. piscicida ribosomal DNA sequence, we developed a PCR-based detection assay that targets the NTS. The assay specificity was assessed by testing clonal P. piscicida and Pfiesteria shumwayae, 35 additional dinoflagellate species, and algal prey (Rhodomonas sp.). Only P. piscicida and nine presumptive P. piscicida isolates tested positive. All PCR-positive products yielded identical sequences for P. piscicida, suggesting that the PCR-based assay is species specific. The assay can detect a single P. piscicida zoospore in 1 ml of water, 10 resting cysts in 1 g of sediment, or 10 fg of P. piscicida DNA in 1 micro g of heterologous DNA. An internal standard for the PCR assay was constructed to identify potential false-negative results in testing of environmental sediment and water samples and as a competitor for the development of a quantitative competitive PCR assay format. The specificities of both qualitative and quantitative PCR assay formats were validated with >200 environmental samples, and the assays provide simple, rapid, and accurate methods for the assessment of P. piscicida in water and sediments.  相似文献   

9.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

10.
Diversity and dynamics of a north atlantic coastal Vibrio community   总被引:4,自引:0,他引:4  
Vibrios are ubiquitous marine bacteria that have long served as models for heterotrophic processes and have received renewed attention because of the discovery of increasing numbers of facultatively pathogenic strains. Because the occurrence of specific vibrios has frequently been linked to the temperature, salinity, and nutrient status of water, we hypothesized that seasonal changes in coastal water bodies lead to distinct vibrio communities and sought to characterize their level of differentiation. A novel technique was used to quantify shifts in 16S rRNA gene abundance in samples from Barnegat Bay, N.J., collected over a 15-month period. Quantitative PCR (QPCR) with primers specific for the genus Vibrio was combined with separation and quantification of amplicons by constant denaturant capillary electrophoresis (CDCE). Vibrio populations identified by QPCR-CDCE varied between summer and winter samples, suggesting distinct warm-water and year-round populations. Identification of the CDCE populations by cloning and sequencing of 16S rRNA genes from two summer and two winter samples confirmed this distinction. It further showed that CDCE populations corresponded in most cases to approximately 98% rRNA similarity groups and suggested that the abundance of these follows temperature trends. Phylogenetic comparison yielded closely related cultured and often pathogenic representatives for most sequences, and the temperature ranges of these isolates confirmed the trends seen in the environmental samples. Overall, this suggests that temperature is a good predictor of the occurrence of closely related vibrios but that considerable microdiversity of unknown significance coexists within this trend.  相似文献   

11.
The exact quantification of tiny amounts of nucleic acids in biological samples continues to remain a requirement in both the experimental and the diagnostic laboratory. Competitive PCR involves the coamplification of a target DNA sample with known amounts of a competitor DNA that shares most of the nucleotide sequence with the target; in this way, any predictable or unpredictable variable affecting PCR amplification has the same effect on both molecular species. Competitive PCR therefore permits the quantification of the absolute number of target molecules in comparison to the amount of competitor DNA. Although requiring intensive post-PCR manipulation, the accuracy of competitive PCR by far exceeds that of any other quantitative PCR procedure, including real-time PCR. This protocol covers all stages in the competitive PCR and RT-PCR methods, from the design and construction of competitor molecules, and the competitive PCR itself, to the analysis of data and quantification of target DNA. Once the correct primers are available, the protocol can be completed in about 24 h.  相似文献   

12.
The protistan parasite Perkinsus marinus is a severe pathogen of the oyster Crassostrea virginica along the east coast of the United States. Very few data have been collected, however, on the abundance of the parasite in environmental waters, limiting our understanding of P. marinus transmission dynamics. Real-time PCR assays with SybrGreen I as a label for detection were developed in this study for quantification of P. marinus in environmental waters with P. marinus species-specific primers and of Perkinsus spp. with Perkinsus genus-specific primers. Detection of DNA concentrations as low as the equivalent of 3.3 x 10(-2) cell per 10-microl reaction mixture was obtained by targeting the multicopy internal transcribed spacer region of the genome. To obtain reliable target quantification from environmental water samples, removal of PCR inhibitors and efficient DNA recovery were two major concerns. A DNA extraction kit designed for tissues and another designed for stool samples were tested on environmental and artificial seawater (ASW) samples spiked with P. marinus cultured cells. The stool kit was significantly more efficient than the tissue kit at removing inhibitors from environmental water samples. With the stool kit, no significant difference in the quantified target concentrations was observed between the environmental and ASW samples. However, with the spiked ASW samples, the tissue kit demonstrated more efficient DNA recovery. Finally, by performing three elutions of DNA from the spin columns, which were combined prior to target quantification, variability of DNA recovery from different samples was minimized and more reliable real-time PCR quantification was accomplished.  相似文献   

13.
Diversity and Dynamics of a North Atlantic Coastal Vibrio Community   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrios are ubiquitous marine bacteria that have long served as models for heterotrophic processes and have received renewed attention because of the discovery of increasing numbers of facultatively pathogenic strains. Because the occurrence of specific vibrios has frequently been linked to the temperature, salinity, and nutrient status of water, we hypothesized that seasonal changes in coastal water bodies lead to distinct vibrio communities and sought to characterize their level of differentiation. A novel technique was used to quantify shifts in 16S rRNA gene abundance in samples from Barnegat Bay, N.J., collected over a 15-month period. Quantitative PCR (QPCR) with primers specific for the genus Vibrio was combined with separation and quantification of amplicons by constant denaturant capillary electrophoresis (CDCE). Vibrio populations identified by QPCR-CDCE varied between summer and winter samples, suggesting distinct warm-water and year-round populations. Identification of the CDCE populations by cloning and sequencing of 16S rRNA genes from two summer and two winter samples confirmed this distinction. It further showed that CDCE populations corresponded in most cases to ~98% rRNA similarity groups and suggested that the abundance of these follows temperature trends. Phylogenetic comparison yielded closely related cultured and often pathogenic representatives for most sequences, and the temperature ranges of these isolates confirmed the trends seen in the environmental samples. Overall, this suggests that temperature is a good predictor of the occurrence of closely related vibrios but that considerable microdiversity of unknown significance coexists within this trend.  相似文献   

14.
A comparative PCR assay, for the absolute quantitation of specific mRNAs in cell and tissue samples, has been designed to overcome problems with previous techniques. cDNAs made from the RNAs are co-amplified with "competitor" plasmid templates under conditions in which reagents are not limiting at the equivalence point, thereby preventing competition between target and competitor templates and distinguishing the assay from competitive PCR assays. The cDNAs are serially diluted, and competitor templates concentrations are kept constant, rather than vice versa, as occurs in competitive PCR assays. Products from target and competitor templates are resolved by electrophoresis and measured by phosphorescent or fluorescent imagery. Both products are measured to minimize errors in the competitor:target ratio. A synthetic external standard RNA is included in the tissue lysis solution and co-purified with endogenous mRNAs, thereby being subjected to identical losses of yield during subsequent procedures. The determination of the number of copies of external standard cDNA allows inefficiencies of RNA extraction and cDNA synthesis to be taken into account. Standard concentrations of plasmids containing the endogenous target sequences are also measured, so that corrections can be made for discrepancies due to unequal amplification of target and competitor sequences. These corrections, together with the use of an external standard and the PCR conditions chosen, allow for the accurate, specific and sensitive determination of the absolute number of mRNA copies in a sample.  相似文献   

15.
Knowledge of the kinds and numbers of nuclear point mutations in human tissues is essential to the understanding of the mutation mechanisms underlying genetic diseases. However, nuclear point mutant fractions in normal humans are so low that few methods exist to measure them. We have now developed a means to scan for point mutations in 100 bp nuclear single copy sequences at mutant fractions as low as 10–6. Beginning with about 108 human cells we first enrich for the desired nuclear sequence 10 000-fold from the genomic DNA by sequence-specific hybridization coupled with a biotin–streptavidin capture system. We next enrich for rare mutant sequences 100-fold against the wild-type sequence by wide bore constant denaturant capillary electrophoresis (CDCE). The mutant-enriched sample is subsequently amplified by high fidelity PCR using fluorescein-labeled primers. Amplified mutant sequences are further enriched via two rounds of CDCE coupled with high fidelity PCR. Individual mutants, seen as distinct peaks on CDCE, are then isolated and sequenced. We have tested this approach by measuring N-methyl-′-nitro-N-nitrosoguanidine (MNNG)-induced point mutations in a 121 bp sequence of the adenomatous polyposis coli gene (APC) in human lymphoblastoid MT1 cells. Twelve different MNNG-induced GC→AT transitions were reproducibly observed in MNNG-treated cells at mutant fractions between 2 × 10–6 and 9 × 10–6. The sensitivity of this approach was limited by the fidelity of Pfu DNA polymerase, which created 14 different GC→TA transversions at a mutant fraction equivalent to ~10–6 in the original samples. The approach described herein should be general for all DNA sequences suitable for CDCE analysis. Its sensitivity and capacity would permit detection of stem cell mutations in tissue sectors consisting of ~108 cells.  相似文献   

16.
Quantitative PCR (QPCR) technology, incorporating fluorigenic 5' nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.  相似文献   

17.
Competitive PCR-ELISA combines competitive PCR with an ELISA to allow quantitative detection of PCR products. It is based on the inclusion of an internal standard competitor molecule that is designed to differ from the target by a short sequence of nucleotides. Once such a competitor molecule has been designed and constructed, target and competitor sequences are concurrently PCR-amplified, before hybridization to two different specific probes and determination of their respective OD values by ELISA. The target can be quantified in relation to a titration curve of different dilutions of the competitor. The competitor can alternatively be used at a unique optimal concentration to allow for standardized detection of the target sequence. PCR-ELISA can be performed in 1 d in laboratories without access to a real-time PCR thermocycler. This technique is applied in diagnostics to monitor the course of infections and drug efficacy. Competitive PCR-ELISA protocols for the quantitative and for the standardized detection of parvovirus B19 are detailed here as an example of the technique.  相似文献   

18.
The molecular determination of viral load in the serum represents the most valuable prognostic marker of HBV infection. In this paper, a new molecular assay for the quantitative measurement of HBV presence is described. It is based on PCR performing with a HBV-specific competitor DNA template. For the construction of the DNA template, a HBV DNA-originated 436 bp DNA fragment was modified by introducing a 110 bp deletion and cloned into pUC19. The resulting vector serves as the competitor DNA template in the competitive PCR. Post-PCR, the competitor DNA generates an amplified fragment of 306 bp; it could be easily distinguished from the product generated from the viral-originated DNA product (416 bp) when the same primers are used. The quantitative ratio between the two products enables the quantitative determination of viral load. The range of the HB-PCR assay is from 3 x 10(4)to 6 x 10(10) particles/ml. A serum HBV load determination performed by HB-PCR assay indicated a close correlation with the results of the Quantiplex HBV DNA assay (bDNA). The HB-PCR assay is cheap, reliable and easy to use in any laboratory working with PCR methods.  相似文献   

19.
Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample.  相似文献   

20.
Use of quantitative real-time PCR (QPCR) with TaqMan probes is increasingly popular in various environmental works to detect and quantify a specific microorganism or a group of target microorganism. Although many aspects of conducting a QPCR assay have become very easy to perform, a proper design of oligonucleotide sequences comprising primers and a probe is still considered as one of the most important aspects of a QPCR application. This work was conducted to design group specific primer and probe sets for the detection of ammonia oxidizing bacteria (AOB) using a real-time PCR with a TaqMan system. The genera Nitrosomonas and Nitrosospira were grouped into five clusters based on similarity of their 16S rRNA gene sequences. Five group-specific AOB primer and probe sets were designed. These sets separately detect four subgroups of Nitrosomonas (Nitrosomonas europaea-, Nitrosococcus mobilis-, Nitrosomonas nitrosa-, and Nitrosomonas cryotolerans-clusters) along with the genus Nitrosospira. Target-group specificity of each primer and probe set was initially investigated by analyzing potential false results in silico, followed by a series of experimental tests for QPCR efficiency and detection limit. In general, each primer and probe set was very specific to the target group and sensitive to detect target DNA as low as two 16S rRNA gene copies per reaction mixture. QPCR efficiency, higher than 93.5%, could be achieved for all primer and probe sets. The primer and probe sets designed in this study can be used to detect and quantify the beta-proteobacterial AOB in biological nitrification processes and various environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号