首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Meiotic prophase I is a complex process involving homologous chromosome (homolog) pairing, synapsis, and recombination. The budding yeast (Saccharomyces cerevisiae) RAD51 gene is known to be important for recombination and DNA repair in the mitotic cell cycle. In addition, RAD51 is required for meiosis and its Arabidopsis (Arabidopsis thaliana) ortholog is important for normal meiotic homolog pairing, synapsis, and repair of double-stranded breaks. In vertebrate cell cultures, the RAD51 paralog RAD51C is also important for mitotic homologous recombination and maintenance of genome integrity. However, the function of RAD51C in meiosis is not well understood. Here we describe the identification and analysis of a mutation in the Arabidopsis RAD51C ortholog, AtRAD51C. Although the atrad51c-1 mutant has normal vegetative and flower development and has no detectable abnormality in mitosis, it is completely male and female sterile. During early meiosis, homologous chromosomes in atrad51c-1 fail to undergo synapsis and become severely fragmented. In addition, analysis of the atrad51c-1 atspo11-1 double mutant showed that fragmentation was nearly completely suppressed by the atspo11-1 mutation, indicating that the fragmentation largely represents a defect in processing double-stranded breaks generated by AtSPO11-1. Fluorescence in situ hybridization experiments suggest that homolog juxtaposition might also be abnormal in atrad51c-1 meiocytes. These results demonstrate that AtRAD51C is essential for normal meiosis and is probably required for homologous synapsis.  相似文献   

2.
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair.  相似文献   

3.
The Saccharomyces cerevisiae RAD54 gene has critical roles in DNA double-strand break repair, homologous recombination, and gene targeting. Previous results show that the yeast gene enhances gene targeting when expressed in Arabidopsis thaliana. In this work we address the trans-species compatibility of Rad54 functions. We show that overexpression of yeast RAD54 in Arabidopsis enhances DNA damage resistance severalfold. Thus, the yeast gene is active in the Arabidopsis homologous-recombination repair system. Moreover, we have identified an A. thaliana ortholog of yeast RAD54, named AtRAD54. This gene, with close sequence similarity to RAD54, complements methylmethane sulfonate (MMS) sensitivity but not UV sensitivity or gene targeting defects of rad54Delta mutant yeast cells. Overexpression of AtRAD54 in Arabidopsis leads to enhanced resistance to DNA damage. This gene's assignment as a RAD54 ortholog is further supported by the interaction of AtRad54 with AtRad51 and the interactions between alien proteins (i.e., yeast Rad54 with AtRAD51 and yeast Rad51 with AtRad54) in a yeast two-hybrid experiment. These interactions hint at the molecular nature of this interkingdom complementation, although the stronger effect of the yeast Rad54 in plants than AtRad54 in yeast might be explained by an ability of the Rad54 protein to act alone, independently of its interaction with Rad51.  相似文献   

4.
5.
During meiosis, homologous chromosomes recognize each other, align, and exchange genetic information. This process requires the action of RecA-related proteins Rad51 and Dmc1 to catalyze DNA strand exchanges. The Mnd1-Hop2 complex has been shown to assist in Dmc1-dependent processes. Furthermore, higher eukaryotes possess additional RecA-related proteins, like XRCC3, which are involved in meiotic recombination. However, little is known about the functional interplay between these proteins during meiosis. We investigated the functional relationship between AtMND1, AtDMC1, AtRAD51, and AtXRCC3 during meiosis in Arabidopsis thaliana. We demonstrate the localization of AtMND1 to meiotic chromosomes, even in the absence of recombination, and show that AtMND1 loading depends exclusively on AHP2, the Arabidopsis Hop2 homolog. We provide evidence of genetic interaction between AtMND1, AtDMC1, AtRAD51, and AtXRCC3. In vitro assays suggest that this functional link is due to direct interaction of the AtMND1-AHP2 complex with AtRAD51 and AtDMC1. We show that AtDMC1 foci accumulate in the Atmnd1 mutant, but are reduced in number in Atrad51 and Atxrcc3 mutants. This study provides the first insights into the functional differences of AtRAD51 and AtXRCC3 during meiosis, demonstrating that AtXRCC3 is dispensable for AtDMC1 focus formation in an Atmnd1 mutant background, whereas AtRAD51 is not. These results clarify the functional interactions between key players in the strand exchange processes during meiotic recombination. Furthermore, they highlight a direct interaction between MND1 and RAD51 and show a functional divergence between RAD51 and XRCC3.  相似文献   

6.
The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.  相似文献   

7.
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.  相似文献   

8.
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.  相似文献   

9.
Rad51 paralogs belong to the Rad52 epistasis group of proteins and are involved in homologous recombination (HR), especially the assembly and stabilization of Rad51, which is a homolog of RecA in eukaryotes. We previously cloned and characterized two RAD51 paralogous genes in Arabidopsis, named AtRAD51C and AtXRCC3, which are considered the counterparts of human RAD51C and XRCC3, respectively. Here we describe the identification of RAD51B homologue in Arabidopsis, AtRAD51B. We found a higher expression of AtRAD51B in flower buds and roots. Expression of AtRAD51B was induced by genotoxic stresses such as ionizing irradiation and treatment with a cross-linking reagent, cisplatin. Yeast two-hybrid analysis showed that AtRad51B interacted with AtRad51C. We also found and characterized T-DNA insertion mutant lines. The mutant lines were devoid of AtRAD51B expression, viable and fertile. The mutants were moderately sensitive to γ-ray and hypersensitive to cisplatin. Our results suggest that AtRAD51B gene product is involved in the repair of double-strand DNA breaks (DSBs) via HRAccession numbers: AB194809 (AtRAD51Bα), AB194810 (AtRAD51Bβ), AB194811 (AtRAD51D).  相似文献   

10.
The Rad50 protein is involved in the cellular response to DNA-double strand breaks (DSBs), including the detection of damage, activation of cell-cycle checkpoints, and DSB repair via recombination. It is essential for meiosis in yeast, is involved in telomere maintenance, and is essential for cellular viability in mice. Here we present the isolation, sequence and characterization of the Arabidopsis thaliana RAD50 homologue (AtRAD50) and an Arabidopsis mutant of this gene. A single copy of this gene is present in the Arabidopsis genome, located on chromosome II. Northern analysis shows a single 4.3 Kb mRNA species in all plant tissues tested, which is strongly enriched in flowers and other tissues with many dividing cells. The predicted protein presents strong conservation with the other known Rad50 homologues of the amino- and carboxy-terminal regions. Mutant plants present a sterility phenotype which co-segregates with the T-DNA insertion. Molecular analysis of the mutant plants shows that the sterility phenotype is present only in the plants homozygous for the T-DNA insertion. An in vitro mutant cell line, derived from the mutant plant, shows a clear hypersensitivity to the DNA-damaging agent methylmethane sulphonate, suggesting a role of RAD50 in double-strand break repair in plant cells. This is the first report of a plant mutated in a protein of the Rad50-Mre11-Xrs2 complex, as well as the first data suggesting the involvement of the Rad50 homologue protein in meiosis and DNA repair in plants.  相似文献   

11.
The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis   总被引:13,自引:0,他引:13  
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified from yeast (Rad55, Rad57 and Dmc1) to vertebrates (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3 and Dmc1). These Rad51-like proteins are all members of the genetic recombination and DNA damage repair pathways. The sequenced genome of Arabidopsis thaliana encodes putative homologues of all six vertebrate Rad51-like proteins. We have identified and characterized an Arabidopsis mutant defective for one of these, AtXRCC3, the homologue of XRCC3. atxrcc3 plants are sterile, while they have normal vegetative development. Cytological observation shows that the atxrcc3 mutation does not affect homologous chromosome synapsis, but leads to chromosome fragmentation after pachytene, thus disrupting both male and female gametogenesis. This study shows an essential role for AtXrcc3 in meiosis in plants and possibly in other higher eukaryotes. Furthermore, atxrcc3 cells and plants are hypersensitive to DNA-damaging treatments, supporting the involvement of this Arabidopsis Rad51-like protein in recombinational repair.  相似文献   

12.
13.
14.
Dubest S  Gallego ME  White CI 《EMBO reports》2002,3(11):1049-1054
Using a specific recombination assay, we show in the plant Arabidopsis thaliana that AtRad1 protein plays a role in the removal of non-homologous tails in homologous recombination. Recombination in the presence of non-homologous overhangs is reduced 11-fold in the atrad1 mutant compared with the wild-type plants. AtRad1p is the A. thaliana homologue of the human Xpf and Saccharomyces cerevisiae Rad1 proteins. Rad1p is a subunit of the Rad1p/Rad10p structure-specific endonuclease that acts in nucleotide excision repair and inter-strand crosslink repair. This endonuclease also plays a role in mitotic recombination to remove non-homologous, 3′-ended overhangs from recombination intermediates. The Arabidopsis atrad1 mutant (uvh1), unlike rad1 mutants known from other eukaryotes, is hypersensitive to ionizing radiation. This last observation may indicate a more important role for the Rad1/Rad10 endonuclease in recombination in plants. This is the first direct demonstration of the involvement of AtRad1p in homologous recombination in plants.  相似文献   

15.
In Saccharomyces cerevisiae, Rad51p plays a central role in homologous recombination and the repair of double-strand breaks (DSBs). Double mutants of the two Zea mays L. (maize) rad51 homologs are viable and develop well under normal conditions, but are male sterile and have substantially reduced seed set. Light microscopic analyses of male meiosis in these plants reveal reduced homologous pairing, synapsis of nonhomologous chromosomes, reduced bivalents at diakinesis, numerous chromosome breaks at anaphase I, and that >33% of quartets carry cells that either lack an organized nucleolus or have two nucleoli. This indicates that RAD51 is required for efficient chromosome pairing and its absence results in nonhomologous pairing and synapsis. These phenotypes differ from those of an Arabidopsis rad51 mutant that exhibits completely disrupted chromosome pairing and synapsis during meiosis. Unexpectedly, surviving female gametes produced by maize rad51 double mutants are euploid and exhibit near-normal rates of meiotic crossovers. The finding that maize rad51 double mutant embryos are extremely susceptible to radiation-induced DSBs demonstrates a conserved role for RAD51 in the repair of mitotic DSBs in plants, vertebrates, and yeast.  相似文献   

16.
During meiosis, homologous chromosomes recognize each other, align, and exchange genetic information. This process requires the action of RecA-related proteins Rad51 and Dmc1 to catalyze DNA strand exchanges. The Mnd1–Hop2 complex has been shown to assist in Dmc1-dependent processes. Furthermore, higher eukaryotes possess additional RecA-related proteins, like XRCC3, which are involved in meiotic recombination. However, little is known about the functional interplay between these proteins during meiosis. We investigated the functional relationship between AtMND1, AtDMC1, AtRAD51, and AtXRCC3 during meiosis in Arabidopsis thaliana. We demonstrate the localization of AtMND1 to meiotic chromosomes, even in the absence of recombination, and show that AtMND1 loading depends exclusively on AHP2, the Arabidopsis Hop2 homolog. We provide evidence of genetic interaction between AtMND1, AtDMC1, AtRAD51, and AtXRCC3. In vitro assays suggest that this functional link is due to direct interaction of the AtMND1–AHP2 complex with AtRAD51 and AtDMC1. We show that AtDMC1 foci accumulate in the Atmnd1 mutant, but are reduced in number in Atrad51 and Atxrcc3 mutants. This study provides the first insights into the functional differences of AtRAD51 and AtXRCC3 during meiosis, demonstrating that AtXRCC3 is dispensable for AtDMC1 focus formation in an Atmnd1 mutant background, whereas AtRAD51 is not. These results clarify the functional interactions between key players in the strand exchange processes during meiotic recombination. Furthermore, they highlight a direct interaction between MND1 and RAD51 and show a functional divergence between RAD51 and XRCC3.  相似文献   

17.
? Mutations in the breast cancer susceptibility gene 2 (BRCA2) are correlated with hereditary breast cancer in humans. Studies have revealed that mammalian BRCA2 plays crucial roles in DNA repair. Therefore, we wished to define the role of the BRCA2 homologs in Arabidopsis in detail. ? As Arabidopsis contains two functional BRCA2 homologs, an Atbrca2 double mutant was generated and analyzed with respect to hypersensitivity to genotoxic agents and recombination frequencies. Cytological studies addressing male and female meiosis were also conducted, and immunolocalization was performed in male meiotic prophase I. ? The Atbrca2 double mutant showed hypersensitivity to the cross-linking agent mitomycin C and displayed a dramatic reduction in somatic homologous recombination frequency, especially after double-strand break induction. The loss of AtBRCA2 also led to severe defects in male meiosis and development of the female gametophyte and impeded proper localization of the synaptonemal complex protein AtZYP1 and the recombinases AtRAD51 and AtDMC1. ? The results demonstrate that AtBRCA2 is important for both somatic and meiotic homologous recombination. We further show that AtBRCA2 is required for proper meiotic synapsis and mediates the recruitment of AtRAD51 and AtDMC1. Our results suggest that BRCA2 controls single-strand invasion steps during homologous recombination in plants.  相似文献   

18.
The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/RAD51L1, a member of the Rad51 family, knocked out. RAD51B(-/-) cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B(-/-) cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to gamma-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B(-/-) cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity.  相似文献   

19.
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.  相似文献   

20.
Bleuyard JY  Gallego ME  White CI 《Chromosoma》2004,113(4):197-203
The Rad50, Mre11 and Xrs2/Nbs1 proteins, which form the highly conserved MRX complex, perform a wide range of functions concerning the maintenance and function of DNA in eukaryotes. These include recombination, DNA repair, replication, telomere homeostasis and meiosis. Notwithstanding the attention paid to this complex, the inviability of vertebrate rad50 and mre11 mutants has led to a relative lack of information concerning the role of these proteins in meiosis in higher eukaryotes. We have previously reported that Arabidopsis atrad50 mutant plants are viable and that atrad50 mutant plants are sterile. The present study reports an analysis of the causes of this sterility and the implication of the AtRad50 protein in meiosis. Both male and female gametogenesis are defective in the Arabidopsis atrad50 mutant and cytological observation of male meiosis indicates that in the absence of the AtRad50 protein, homologous chromosomes are unable to synapse. Finally, the atrad50 mutation leads to the destruction of chromosomes during meiosis. These phenotypes support a role for the Arabidopsis MRX complex in early stages of meiotic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号