首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants employ various defensive tactics against herbivores but are rarely considered to use rapid movements to resist predation. However, the aboveground parts of plants are often forcefully moved by wind and rain. This passive movement has been overlooked as an anti‐herbivore trait. The leaves of many plant species, such as aspens, Indian sacred fig, bamboos, and palms, tremble even in a slight breeze. Leaves that are easily moved by gentle winds can sometimes resist strong winds and may have other benefits as well. In the present study, it is proposed that the movement of such plant leaves physically deters arthropod herbivory and pathogen infection by repelling colonization and oviposition by herbivorous insects. This leads to herbivores and pathogens being dislodged from the plants, and the ensuing death of the herbivores on the ground or at least their recolonization to other plants, as well as the interruption of feeding, intraspecific communication and the mating behaviour of herbivores, thus lowering their performance on the plant or increasing enemy attack of the herbivores. In addition, passive leaf movements may undermine herbivore camouflage and expose them to predation, and may also allow plant volatiles to diffuse efficiently to repel herbivores and attract natural enemies. Thus, the mechanistic properties of these leaves may have anti‐herbivore effects in the wind and rain. This hypothesis can also be applied to aquatic plants that tremble in gentle water currents. In addition, genetic manipulation of the tendency for leaf movement may be beneficial for the management of pest insects and pathogens with reduced pesticides in forestry and agriculture. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 738–747.  相似文献   

2.
Two recent hypotheses have proposed that non-green plant colouration evolved as a defence against herbivores, either as protective colouration promoting handicap signals indicating plant fitness or by undermining their crypsis. The handicap hypothesis posits a co-evolutionary process between plants and herbivores, whereas the anti-crypsis hypothesis suggests that an arms race between insects and plants is the evolutionary mechanism. Both explanations assume that insects are the evolutionary origin causing plants' colouration. Here, we propose a different hypothesis, termed the "Defence Indication hypothesis". This idea focuses on the multiple protective functions of anthocyanins and carotenoids as pigments, and suggests that plant colouration evolved primarily in response to various stressors. Because pigments and defensive compounds share a common biosynthesis, the production of pigments also provides elevated defensive strengths against herbivores, a process termed priming. In effect, the Defence Indication hypothesis predicts that pleiotropic effects of the pigments and, more generally, plants' shared defence responses, explain why insects might react to plant colouration.  相似文献   

3.
As predicted by the enemy release hypothesis, plants are supposedly less attacked by herbivores in their introduced range than in their native range. However, the nature of the natural enemies, in particular their degree of specificity may also affect the level of enemy escape. It is therefore expected that ectophagous invertebrate species, being generally considered as more generalists than endophagous species, are more prompt to colonise alien plants. In Swiss, Siberian and Russian Far East arboreta, we tested whether alien woody plants are less attacked by native herbivorous insects than native congeneric woody plant species. We also tested the hypothesis that leaf miners and gall makers show stronger preference for native woody plants than external leaf chewers. In all investigated regions, leaf miners and gall makers were more abundant and showed higher species richness on native woody plants than on congeneric alien plants. In contrast, external leaf chewers did not cause more damage to native plants than to alien plants, possibly because leaf chewers are, in general, less species specific than leaf miners and gall makers. These results, obtained over a very large number of plant-enemy systems, generally support the hypothesis that alien plants partly escape from phytophagous invertebrates but also show that different feeding guilds may react differently to the introduction of alien plants.  相似文献   

4.
The ‘enemy‐free space’ hypothesis predicts that herbivorous insects can escape their natural enemies by switching to a novel host plant, with consequences for the evolution of host plant specialisation. However, if natural enemies follow herbivores to their novel host plants, enemy‐free space may only be temporary. We tested this by studying the colonisation of the introduced tree Eucalyptus grandis (Hill) Maiden (Myrtaceae) by insects in Brazil, where various species of herbivores have added eucalyptus to their host plant range, which consists of native myrtaceous species such as guava. Some herbivores, for example, Thyrinteina leucoceraea Ringe (Lepidoptera: Geometridae), cause outbreaks in eucalyptus plantations but not on guava, possibly because eucalyptus offers enemy‐free space. We sampled herbivores (mainly Lepidoptera species) and natural enemies on eucalyptus and guava and assessed parasitism of Lepidoptera larvae on both host plant species during ca. 2 years. Overall, predators were encountered more frequently on guava than on eucalyptus. In contrast, parasitoids were encountered equally and parasitism rates of Lepidoptera larvae were similar on both host plants. This indicates that herbivores may escape some enemies by moving to a novel host plant. However, this escape may be temporary and may vary with time. We argue that studying temporal and spatial patterns of enemy‐free space and the response of natural enemies to host use changes of their herbivorous prey is essential for understanding the role of natural enemies in the evolution of host plant use by herbivorous arthropods.  相似文献   

5.
Mammalian herbivores induce changes in the chemical composition, phenology, distribution, and abundance of the plants they feed on. Consequently, invertebrate herbivores (predominantly insects) that depend on those plants, and the predators and parasitoids that are associated with them, may be affected. This plant-mediated indirect interaction between mammals and invertebrates has been extensively studied, but mammalian herbivores may also directly affect plant-dwelling invertebrates (PDI) by incidentally ingesting them while feeding. The ubiquity and small size of PDI render them highly susceptible to incidental ingestion, but as common as this interaction may intuitively seem, very little is known about its prevalence and ecological consequences. Nevertheless, cases of incidental ingestion of PDI and associated adaptations for avoiding it that have been sporadically documented in several invertebrate groups and life stages allow us to carefully extrapolate and conclude that it should be common in nature. Incidental ingestion may, therefore, bear significant consequences for PDI, but it may also affect the mammalian herbivores and the shared plants. Future research on incidental ingestion of PDI would have to overcome several technical difficulties to gain better insight into this understudied ecological interaction.  相似文献   

6.

Background  

Plants, plant-feeding insects, and insect parasitoids form some of the most complex and species-rich food webs. According to the classic escape-and-radiate (EAR) hypothesis, these hyperdiverse communities result from coevolutionary arms races consisting of successive cycles of enemy escape, radiation, and colonization by new enemy lineages. It has also been suggested that "enemy-free space" provided by novel host plants could promote host shifts by herbivores, and that parasitoids could similarly drive diversification of gall form in insects that induce galls on plants. Because these central coevolutionary hypotheses have never been tested in a phylogenetic framework, we combined phylogenetic information on willow-galling sawflies with data on their host plants, gall types, and enemy communities.  相似文献   

7.
李俊  龚明  孙航 《云南植物研究》2006,28(2):183-193
植物为适应植食动物的取食压力而进化出物理、化学等多种防御机制,以把植食伤害降到最低程度,但动物不断的抽样尝试行为还是让有防御行为的植物受到伤害。因此,向潜在的植食动物传达自己的防御信号对植物是有益的。颜色作为一种稳定有效的视觉信号通常是花和果实的诱惑信号,某些情况下也是一种警戒防御信号,植食动物经过抽样学习后能识别这种防御信号并主动回避,从而形成了植物的警戒色。起源于猎物-捕食者关系的警戒色理论在动物界得到了充分研究,但植物警戒色却不为人所知,直到2001年Hamilton关于秋季树叶颜色的信号假说公开发表后,才引起人们对植物警戒色的初步研究。如今在早秋变色树种、幼叶、多剌植物、植物繁殖器官都发现了警戒色的一些例证,尽管有些还不太明确甚至存在争议,但至少为植物警戒色的进一步研究奠定了基础。植物营养体颜色在时空上的多态性变化值得人们更深入地研究,防御权衡假说也预示了防御有害植食动物的警戒作用存在于繁殖器官的可能性,研究它们生理和生态适应意义有利于人们更深程度地理解植物-动物之间的复杂关系。  相似文献   

8.
What do red and yellow autumn leaves signal?   总被引:3,自引:0,他引:3  
The widespread phenomenon of red and yellow autumn leaves has recently attracted considerable scientific attention. The fact that this phenomenon is so prominent in the cooler, temperate regions and less common in warmer climates is a good indication of a climate-specific effect. In addition to the putative multifarious physiological benefits, such as protection from photoinhibition and photo-oxidation, several plant/animal interaction functions for such coloration have been proposed. These include (1) that the bright leaf colors may signal frugivores about ripe fruits (fruit flags) to enhance seed dispersal; (2) that they signal aphids that the trees are well defended (a case of Zahavi’s handicap principle operating in plants); (3) that the coloration undermines herbivore insect camouflage; (4) that they function according to the “defense indication hypothesis,” which states that red leaves are chemically defended because anthocyanins correlate with various defensive compounds; or (5) that because sexual reproduction advances the onset of leaf senescence, the pigments might indicate to sucking herbivores that the leaves have low amounts of resources. Although the authors of hypotheses 3, 4, and 5 did not say that bright autumn leaves are aposematic, since such leaves are chemically defended, unpalatable, or both, we suggest that they are indeed aposematic. We propose that in addition to the above-mentioned hypotheses, autumn colors signal to herbivorous insects about another defensive plant property: the reliable, honest, and critical information that the leaves are about to be shed and may thus cause their mortality. We emphasize that all types of defensive and physiological functions of autumn leaves may operate simultaneously.  相似文献   

9.
Abstract Understanding how the landscape‐scale replacement of indigenous plants with alien plants influences ecosystem structure and functioning is critical in a world characterized by increasing biotic homogenization. An important step in this process is to assess the impact on invertebrate communities. Here we analyse insect species richness and abundance in sweep collections from indigenous and alien (Australasian) woody plant species in South Africa's Western Cape. We use phylogenetically relevant comparisons and compare one indigenous with three Australasian alien trees within each of Fabaceae: Mimosoideae, Myrtaceae, and Proteaceae: Grevilleoideae. Although some of the alien species analysed had remarkably high abundances of herbivores, even when intentionally introduced biological control agents are discounted, overall, herbivorous insect assemblages from alien plants were slightly less abundant and less diverse compared with those from indigenous plants – in accordance with predictions from the enemy release hypothesis. However, there were no clear differences in other insect feeding guilds. We conclude that insect assemblages from alien plants are generally quite diverse, and significant differences between these and assemblages from indigenous plants are only evident for herbivorous insects.  相似文献   

10.
Habitat management is a type of conservation biological control that focuses on increasing natural enemy populations by providing them with plant resources such as pollen and nectar. Insects are known to respond to a variety of plant characteristics in their search for plant-provided resources. A better understanding of the specific characteristics used by natural enemy insects in selecting these resources could greatly improve efficiency in screening plants for habitat management. We examined 5 previously tested and widely recommended resource plants and 43 candidate plants to test whether the number and type of natural enemies and herbivores at each plant were predicted by plant characteristics including: period of peak bloom, floral area, maximum flower height, hue, chroma, and corolla size. Natural enemy abundance increased with week of peak bloom and greater floral area across all plants tested. Ordination of plant characteristics indicated that increasing floral area, period of peak bloom, maximum flower height, and decreasing corolla width grouped together into a single principal component. Both natural enemy and herbivore abundance increased significantly with the principal component for this set of characteristics, but the relationship with herbivore abundance was weaker. These results indicate that, for a given time of the season, selection of plants with the largest floral area has potential to increase natural enemy abundance in habitat management plantings and streamline plant selection for habitat management.  相似文献   

11.
Herbivores modify various ecological processes including interactions between native and exotic plants that may affect invasion success by the exotic plants. It is unknown whether different types of exotic herbivores have similar effects on native and exotic plants. Using two distinct data sets, we ran meta-analyses to compare exotic vertebrate and invertebrate herbivore preferences for, and effects on performance and population sizes of native and exotic plants. We found that exotic vertebrate herbivores have positive effects on exotic plant performance and population sizes, and no significant effects on native plants. Exotic invertebrates have significant negative effects on performance and population sizes of both exotic and native plants. Vertebrates prefer to feed on native plants relative to exotic plants, while invertebrates prefer the exotic plants to native plants. Thus the exotic vertebrate herbivores may aid invasiveness of exotic plants, in accordance with the invasional meltdown hypothesis, while exotic invertebrate herbivores probably have no net effect on invasion process of the exotic plants. Invertebrate herbivore preferences for exotic plants support the biotic resistance hypothesis, as the native plants probably resist the invertebrate herbivory. We also tested an evolutionary logic that posits that herbivores with similar evolutionary history as plants will affect the plants less negatively than plants with which they have not co-evolved. Our results indicate that there is no consistent pattern in effects of exotic vertebrate and invertebrate herbivores on exotic plants with or without which they have co-evolved.  相似文献   

12.
曾凡勇  孙志强 《生态学报》2014,34(5):1061-1071
围绕"多样性稳定性"假说、"联合抗性假说"、"生长势假说"、"胁迫假说"、以及下调、上调和推拉等机制与假说提出的背景与实验验证的证据,力图辨析其概念以及它们之间的相互关系。作者认为,多样性-稳定性机制关注森林生态系统的功能,是基于群落甚至景观层次。多样性条件下的联合抗性机制和联合易感性应属于稳定性中的抵抗力范畴。联合抗性机制的主要基础是基于资源集中假说和天敌假说,这些观点在种群层次上更易理解;上调力和下调力机制是以食物网底部的资源与顶端的天敌来探讨这种互作关系。因此,资源集中与上调力有着对应关系,而天敌假说只是下调力机制中的一个层面而已。植物生长势假说和植物胁迫假说力图从植物个体或种的群体的生长状态出发解析植食性动物的对寄主的选择趋势。上述有关植食性昆虫与寄主互作的机制、假说与证据是基于不同的层面提出的,因而在解析研究目标时,由于基本面的差异有可能会得出不同的结论。以近年来的研究进展和研究成果为依据有针对性地阐述这些理论对森林有害生物生态调控技术的指导作用,其中,联合抗性和联合易感性理论对指导森林有害生物生态控制具有更直接的指导作用。进一步提出了相应的亟待解决的科学问题。  相似文献   

13.
B. B. Schultz 《Oecologia》1992,90(2):297-299
Summary Recent studies have suggested that plant galls benefit only the insects living in them and not the host plants, and that galls are induced by insects primarily to improve the plant as a microenvironment or a food source. The potential advantage to insects of protection from their predators and parasitoids has been considered unclear and perhaps minor in importance. However, the potential threat to gallforming insects from other insect herbivores has usually been relatively neglected. This paper notes literature and observations which suggest that herbivores may either consume or be deterred by galls. Even soft leaf galls produced by Hormaphis and Phylloxera aphids appeared to deter some herbivores in the field. The threat of herbivory to galls might help explain general patterns of gall ecology and morphology, and deserves closer attention.  相似文献   

14.
Damage to sagebrush attracts predators but this does not reduce herbivory   总被引:2,自引:0,他引:2  
Emissions of volatiles increase following herbivory from many plant species and volatiles may serve multiple functions. Herbivore‐induced volatiles attract predators and parasitoids of herbivores and are often assumed to benefit plants by facilitating top‐down control of herbivores; this benefit of induced emissions has been tested only a few times. Volatile compounds released by experimentally clipped sagebrush shoots have been shown to reduce levels of chewing damage experienced by other shoots on the same plant and on neighboring sagebrush plants. In this study, I asked whether experimental clipping attracted predators of herbivorous insects to sagebrush shoots. I also evaluated aphid populations and chewing damage on clipped and unclipped shoots and whether predators were likely to have caused differences in aphids and chewing damage. Shoots that had been clipped recruited more generalist predators, particularly coccinellids and Geocoris spp. in visual surveys conducted during two seasons. Clipping also caused increased numbers of parasitized aphids in one season. Ants were common tending aphids but were not significantly affected by clipping. Despite the increase in generalist predators, clipped plants were more likely to support populations of aphids that increased during both seasons compared to aphids on unclipped control plants. Clipped shoots suffered less damage by chewing herbivores in the 1‐year in which this was measured. Chewing damage was not correlated with numbers of predators. These results suggest that predators and parasitoids were attracted to experimentally clipped sagebrush plants but that these predators were not effective at reducing net damage to the plant. This conclusion is not surprising as much of the herbivory is inflicted by grasshoppers and deer, herbivores that are not vulnerable to the predators attracted to sagebrush volatiles. More generally, it should not be assumed that predators that are attracted by herbivore‐induced volatiles necessarily benefit the plant without testing this hypothesis under field conditions.  相似文献   

15.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   

16.
Rapid warming in northern ecosystems is simultaneously influencing plants, herbivores and the interactions among them. Recent studies suggest that herbivory could buffer plant responses to environmental change, but this has only been shown for vertebrate herbivores so far. The role of invertebrate herbivory in tundra ecosystems is often overlooked, but can be relevant in determining the structure and dynamics of tundra plant communities and may also affect how plants respond to warming. Invertebrate herbivores are also likely to respond more rapidly to warming than vertebrates because their behaviour and life cycles strongly depend on temperature. We investigated the effects of current season warming on Arctic moth caterpillars, their herbivory rates, and the subsequent responses of two common tundra plants, Salix arctica and Dryas octopetala. We manipulated both herbivore presence and temperature in a full‐factorial field experiment at two elevations, using enclosures and passive warming chambers. Changes in temperature achieved through elevation and/or experimental warming directly affected caterpillars, herbivory and the responses of plants. Caterpillars performed worse (higher respiration rates and lower growth rates) in warmer, lower elevation plots and shifted their diets towards more nutritious foods, such that the relative intensity of herbivory changed for the two studied plants. Within‐season responses of both forage plant species were weak, but invertebrate herbivores affected the responses of plants to elevation or experimental warming. Our results suggest that increased temperatures can reduce the performance of cold‐adapted invertebrate herbivores, with potential consequences to the longer term responses of tundra plants to warming due to changes in herbivory rates and selective foraging.  相似文献   

17.
The defensive strategy known as masquerade, or camouflage without crypsis (a type of deception that partly overlaps mimicry) has received little scientific attention in animals, and concerning plants even less. Moreover, when cases of masquerade were described in plants, they were considered as camouflage or other types of defence through mimicry. Masquerade (including in plants) may operate not only through vision, but also via other senses. Here I review several types of published cases of masquerade in plants, although they were not defined as such when published, and propose that there are two different types of masquerade in plants: (1) non‐plant‐mimicking defensive masquerade, in which they look (or smell) like uninteresting objects to herbivores (look like a stone or an animal, or smell like droppings or carrion, etc.), and (2) plant‐mimicking defensive masquerade, in which plants or plant parts do not look appealing for herbivores, not being green, looking dead or old, harbouring insects, already attacked, less nutritious, etc. Defensive masquerade by plants may in many cases be non‐exclusive, but serve additional physiological and defensive functions or operate simultaneously with other defences. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 1162–1166.  相似文献   

18.
Color is a common feature of animal defense. Herbivorous insects are often colored in shades of green similar to their preferred food plants, making them difficult for predators to locate. Other insects advertise their presence with bright colors after they sequester enough toxins from their food plants to make them unpalatable. Some insects even switch between cryptic and aposomatic coloration during development.1 Although common in animals, quantitative evidence for color-based defense in plants is rare. After all, the primary function of plant leaves is to absorb light for photosynthesis, rather than reflect light in ways that alter their appearance to herbivores. However, recent research is beginning to challenge the notion that color-based defence is restricted to animals.Key words: aposomatic colouration, cryptic colouration, herbivory, moa, plant defenseTemperate deciduous forests provide what is arguably the most extraordinary display of color in nature. Prior to leaf-fall in autumn, the leaves of many deciduous tree species in Asia, Europe and North America turn red, leading to brilliantly colored landscapes. Once thought to be a by-product of chlorophyll re-absorption prior to leaf abscission, autumn flushes in red leaf colors are now known to result from the active synthesis of red-colored pigments.2,3 Although the exact reason for the production of red-colored pigments prior to leaf-fall is unknown, it has recently been hypothesized to be a form of defense.4 Aphids are common phloem-feeding herbivores in deciduous forests, which disperse from the forest floor into tree crowns in autumn, and the synthesis of red pigments could signal the timing of leaf fall and the reduction in the supply of photosynthate.5,6 Although there are also physiological explanations,7 red leaf colors could be a reliable signal of unpalatably to herbivores.8Lev-Yadun and Holopainen9 recently showed that there are fewer red-colored deciduous tree species in Europe than in North America, and they speculate that historical processes are the cause. During the advance and retreat of glaciers in the Pleistocene, the European Alps would have hindered the movement of plants and their herbivores in response to long-term climate change. Mountain ranges in North America run perpendicular to the equator, which would facilitate these migrations. Therefore, if red leaves are signals to herbivores, geographic differences in leaf pigmentation may be ‘anachronistic’.10 In other words, they may result from historical coevolutionary dynamics between plants and their herbivores, rather than present day selection pressures alone.Despite these important insights, our understanding of color-based defense in plants is in its infancy and progress hinges on quantitative tests in other parts of the globe. Previous work is also restricted largely to aposomatic, or warning colors.11 Given that cryptic coloration is widespread in animals, it might also be common in plants. Yet we are far from determining if this is true.Here, I discuss several New Zealand plant species that seem to be colored in ways that would make them difficult for herbivores to locate. I suggest that these plants are anachronisms; their unusual appearance is the result of selection from flightless browsing birds called moa, which went extinct following the arrival of humans in New Zealand 750 years ago. I also discuss the difficulties associated with testing for cypsis in plants and finish by outlining a methodological approach to test for color-based defense in plants when the putative herbivores are either unknown or extinct.  相似文献   

19.
Insect herbivores feeding on low-quality plants often compensate by increasing their consumption of plant tissue. This usually results in a longer developmental time leading to a higher vulnerability to natural enemies. This has been termed the slow-growth, high-mortality hypothesis. To explore how compensation may shape the species composition of herbivore and natural enemy populations, we present a mathematical model of a tri-trophic system incorporating both the nutritional quality of plants and herbivores, and the compensatory ability of herbivores and their natural enemies. Using this model we predict the abundance of herbivores and natural enemies, and some characteristics of the composition of species of insect communities along a gradient of plant nutritional quality. Specifically, we make the following predictions: 1) In the absence of natural enemies, the abundance of the juvenile herbivores increases with plant quality, and only highly compensating herbivores persist at low plant nutritional quality. 2) If natural enemies are present, the abundance of the juvenile herbivores decreases with increasing plant quality due to more effective suppression by the natural enemies. Poorly compensating herbivores increase while their highly compensating counterparts decrease with lowered plant quality. 3) When the plants have low nutritional quality, natural enemies will only persist when either very highly compensating herbivores are present or if the natural enemy itself is highly compensating. 4) The abundance of adult herbivores in a community with natural enemies can either increase or decrease with increasing plant quality depending on the compensatory abilities of herbivores and natural enemies.  相似文献   

20.
The very conspicuous dazzle coloration invented for naval defence during World War I was used in pre‐radar days to mislead attackers of naval units about vessel size, type, speed, and direction. Among several potential types of defences, it is proposed that zebra‐like white leaf variegation may defend leaves and other plant organs from herbivory as a result of dazzle effects. Two different dazzle effects may be involved in defending plants from herbivory, making it hard for herbivores (1) to decide where, in a three‐dimensional space, to bite the leaves (large herbivores) and (2) to land on them (insects). In addition, the related types of leaf coloration described in the present study, comprising parallels of military defensive trickery naval painting, may also deceive herbivores about the actual shape, location, and identity of leaves. Some of these visual defences may operate at the same time as other visual defences, such as aposematism, or serve various physiological functions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 692–697.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号