首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each of SPF mice(Scl: ICR strain, 3-week-old males) was inoculated with 5 x 10(4) oocysts of Cryptosporidium by stomach tube. The oocysts were large type one which was previously isolated from Korean mice, and passaged in 3-week-old SPF mice. The patterns of oocyst discharge were monitored daily, and in order to observe the ultrastructure of developmental stages the stomach of the mice was examined by transmission electron microscopy (TEM) at 4 weeks post-inoculation. The prepatent period for 6 mice was 5.6 days post-inoculation on the average, and the patent period was 63.2 days. The number of oocysts discharged per day from the mice reached peak on day 36.6 post-inoculation on the average. A large number of oocysts were found in fecal samples obtained from inoculated mice on days 30-50 post-inoculation. C. muris was larger than C. parvum at almost every developmental stages, the size difference being 1.4 times in oocysts, 2.4 times in sporozoites, 1.6 times in merozoites, and 1.5 times in microgametes. The ultrastructural features of the attachment site of C. muris to the mucus cells were remarkably different from those of C. parvum and its closely related species. The anterior projection of the protozoa (C. muris), the outer aspect of which was surrounded by a thick filamentous process of the host cell, has not been reported at any developmental stages of C. parvum or its closely related species. The size of the oocysts of strain RN 66 was larger than that of Korean mice origin. The above results reveal that the large type Cryptosporidium of Korean mice origin is identified as Cryptosporidium muris and this type was named as C. muris (strain MCR).  相似文献   

2.
Five-week-old Wistar/Ms rats were inoculated intranasally with a lung homogenate containing a strain of cilia-associated respiratory (CAR) bacillus and were examined on days 4, 7, 14, 21, 28 and 56 postinoculation (PI). Some rats showed clinical signs with wheezing and considerable body weight loss from day 21 PI. Gross lesions, including enlargement of lungs with focal atelectasis, bronchiectasis and emphysema, were observed from day 21 PI. Histologically, round cell infiltration was first present in the lamina propria of the nasal respiratory mucosa on day 7 PI. From day 14 PI, colonization of the CAR bacillus (4-8 micron in length), associated with round cell infiltration in the lamina propria and the peripheral regions, was observed in the ciliated mucosa of the bronchioles, bronchi, trachea and nasal cavities. Generally, the lesions progressed and expanded from upper to lower airways with time. Sporadic mucopurulent bronchopneumonia was observed from day 21 PI in some rats. The CAR bacilli (0.2-0.25 micron in diameter) were also demonstrated electron-microscopically in the ciliated epithelium of the intrapulmonary airways. The CAR bacillus antigen was demonstrated on the ciliated mucosa of the affected airways by the indirect immunofluorescence assay technique. Microbiological examination revealed that the rats used in this study were free from other known respiratory pathogens throughout the experimental period. Thus, it is suggested that the CAR bacillus alone can produce a murine respiratory disease. Fourteen days were needed for pathological lesions to develop.  相似文献   

3.
Rat and monkey are species that are used in models of human airway hyperresponsiveness. However, the wall structures of rat and monkey airways are different from each other, with that of the monkey more closely resembling that of humans. We hypothesized that differences in wall structure would explain differences in airway responsiveness. Using videomicrometry, we measured airway luminal area in lung slices to compare proximal and distal airway responsiveness to methacholine in the rat and monkey. The airway type was then histologically identified. Proximal airways of the young rat and monkey were equally responsive to methacholine. In contrast, respiratory bronchioles of monkeys were less responsive than were their proximal bronchi, whereas the distal bronchioles of rats were more responsive than their proximal bronchioles. Both proximal and distal airways of younger monkeys were more responsive than those of older monkeys. Airway heterogeneity in young monkeys was greatest with regard to degree of airway closure of respiratory bronchioles. We conclude that responsiveness to methacholine varies with airway wall structure and location.  相似文献   

4.
We assessed the retention and clearance of inhaled particles in six anatomic compartments of the respiratory tract. Hamsters were exposed for 45 min to 0.9-micron fluorescent latex particles either at rest (n = 9) or while running on a laddermill (n = 9). Oxygen consumption, which was used to estimate minute ventilation, was continuously monitored. Three animals from each group, rest and exercise, were killed at 10 min, 24 h, or 7 days after the exposure. Morphometric techniques were used to determine the number of particles retained in nose and oropharynx (NOSE), trachea and extrapulmonary airways, intrapulmonary conducting airways, respiratory bronchioles, alveolar ducts (AD), and alveoli (ALV). At 10 min, total particle retention increased linearly as a function of O2 consumption (slope = 1.4 +/- 0.3 x 10(6) particles.ml-1.g-1.h-1, P less than 0.015). Exercised hamsters retained 4.4 times more total particles in their NOSE than rested hamsters, but parenchymal retention (AD + ALV) was unaffected. After 7 days, 95% of the particles were cleared from the NOSE, 80% from the trachea and extrapulmonary airways, 44% from intrapulmonary conducting airways and respiratory bronchioles, and 16% from AD and ALV. There was evidence of particle redistribution from AD to ALV during the 1st day. We conclude that exercise enhances the deposition of 0.9-micron particles in the upper respiratory tract but not in the parenchyma. Subsequently, the deposited particles are cleared at varying rates depending on the lung compartment.  相似文献   

5.
Specific Pathogen Free (SPF) male Wistar rats were inoculated intranasally with Parker's rat coronavirus (PRC), then killed at various intervals post-inoculation (pi). PRC inoculated rats had transient respiratory signs. Intermandibular swelling was evident in some rats at 6-8 days pi. During the acute stages of the disease, inflammatory lesions were present in the respiratory tract and in the salivary and lacrimal glands. Regenerative lesions were observed in the salivary and lacrimal glands at 2 weeks pi. Inoculated rats seroconverted at 8-14 days pi, and significant coronaviral antibody titers were present in inoculated rats examined at 21 days pi with PRC. Changes in the respiratory tract and salivary and lacrimal glands were identical in incidence, distribution and nature to those observed in sialodacryoadenitis (SDA) virus inoculated Wistar rats. Thus, in the absence of viral isolation and characterization, "rat coronavirus infection" is a more appropriate term than either PRC infection or sialodacryoadenitis (SDA).  相似文献   

6.
To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region.  相似文献   

7.
Airway remodeling is a prominent feature of certain immune-mediated lung diseases such as asthma and chronic lung transplant rejection. Under conditions of airway inflammation, the respiratory epithelium may serve an important role in this remodeling process. Given the proposed role of respiratory epithelium in nonspecific injury models, we investigated the respiratory epithelium in an immune-specific orthotopic airway transplant model. MHC-mismatched tracheal transplants in mice were used to generate alloimmune-mediated airway lesions. Attenuation of this immune injury and alteration of antidonor reactivity were achieved by the administration of combined anti-LFA-1/anti-CD40L mAbs. By contrast, without immunotherapy, transplanted airways remodeled with a flattening of respiratory epithelium and significant subepithelial fibrosis. Unopposed alloimmune injury for 10 days was associated with subsequent epithelial transformation and subepithelial fibrosis that could not be reversed with immunotherapy. The relining of donor airways with recipient-derived epithelium was delayed with immunotherapy resulting in partially chimeric airways by 28 days. Partial chimerism was sufficient to prevent luminal fibrosis. However, epithelial chimerism was also associated with airway remodeling. Therefore, there appears to be an intimate relationship between the morphology and level of chimerism of the respiratory epithelium and the degree of airway remodeling following alloimmune injury.  相似文献   

8.
To identify lung units associated with liquid leakage into the air space in high-pressure pulmonary edema, we perfused air-inflated dog lung lobes with albumin solution to fill the loose peribronchovascular interstitium. Next, we perfused the lobes for 90 s with fluorescent albumin solution then froze the lobes in liquid nitrogen. This procedure confined the fluorescent perfusate to the liquid flux pathway between the circulation and the air space and eliminated the previously filled peribronchovascular cuffs as a source of the fluorescence that entered the air space. We divided each frozen lobe into three horizontal layers and prepared fluorescence-microscopic sections of each layer. In the most apical layers where alveolar flooding was minimal, 10.6 +/- 21.0% (SD) of alveolar ducts were either fluorescence filled or air filled and continuous with fluorescence-filled alveoli. In the same layers, 11.0 +/- 19.0% of respiratory bronchioles were similarly labeled. No terminal bronchioles in these layers were fluorescence labeled. This suggested that the fluorescent albumin entered the air space across the epithelium of respiratory bronchioles, alveolar ducts, or their associated alveoli. To simulate an alternative explanation, i.e., that fluorescence first entered central airways then flowed into peripheral air spaces, we prepared two additional lobes that we first partially inflated with fluorescent albumin then filled to capacity with air. This pushed the fluorescent solution along the airways into the lung periphery. In these lobes the ciliary lining of bronchi and terminal bronchioles was fluorescence coated. By comparison, cilia in fluorescence-perfused lobes were not coated. We conclude that alveolar flooding in hydrostatic pulmonary edema occurs across the epithelium of alveolar ducts, respiratory bronchioles, or their associated alveoli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.

Rationale

Respiratory syncytial virus (RSV) infection in preterm and newborn infants can result in severe bronchiolitis and hospitalization. The lamb lung has several key features conducive to modeling RSV infection in human infants, including susceptibility to human strains of RSV such as the A2, Long, and Memphis Strain 37 (M37). In this study, the kinetics of M37 infection was investigated in newborn lambs in order to better define clinical, viral, physiological, and immunological parameters as well as the pathology and lesions.

Methods

Newborn lambs were nebulized with M37 hRSV (6 mL of 1.27 x 107 FFU/mL), monitored daily for clinical responses, and respiratory tissues were collected from groups of lambs at days 1, 3, 4, 6, and 8 post-inoculation for the assessment of viral replication parameters, lesions and also cellular, immunologic and inflammatory responses.

Results

Lambs had increased expiratory effort (forced expiration) at days 4, 6, and 8 post-inoculation. Nasal wash lacked RSV titers at day 1, but titers were present at low levels at days 3 (peak), 4, and 8. Viral titers in bronchoalveolar lavage fluid (BALF) reached a plateau at day 3 (4.6 Log10 FFU/mL), which was maintained until day 6 (4.83 Log10 FFU/mL), and were markedly reduced or absent at day 8. Viral RNA levels (detected by RT-qPCR) in BALF were indistinguishable at days 3 (6.22 ± 0.08 Log10 M37 RNA copies/mL; mean ± se) and 4 (6.20 ± 0.16 Log10 M37 RNA copies/mL; mean ± se) and increased slightly on day 6 (7.15 ± 0.2 Log10 M37 RNA copies/mL; mean ± se). Viral antigen in lung tissue as detected by immunohistochemistry was not seen at day 1, was present at days 3 and 4 before reaching a peak by day 6, and was markedly reduced by day 8. Viral antigen was mainly present in airways (bronchi, bronchioles) at day 3 and was increasingly present in alveolar cells at days 4 and 6, with reduction at day 8. Histopathologic lesions such as bronchitis/bronchiolitis, epithelial necrosis and hyperplasia, peribronchial lymphocyte infiltration, and syncytial cells, were consistent with those described previously for lambs and infants.

Conclusion

This work demonstrates that M37 hRSV replication in the lower airways of newborn lambs is robust with peak replication on day 3 and sustained until day 6. These findings, along with the similarities of lamb lung to those of infants in terms of alveolar development, airway branching and epithelium, susceptibility to human RSV strains, lesion characteristics (bronchiolitis), lung size, clinical parameters, and immunity, further establish the neonatal lamb as a model with key features that mimic RSV infection in infants.  相似文献   

10.
Clara cell secretory protein (CCSP) is a protective lung protein that is believed to have antioxidant, immunomodulatory, and anticarcinogenic properties; to be present in all adult mammals; and to be well conserved in rodents, humans, and nonhuman primates. The rationale for this study is to define the distribution and abundance of CCSP in the airway epithelium and lavage fluid of the adult rhesus monkey and to provide information for evaluating CCSP as a marker of Clara cells and as a biomarker of lung health. Lung tissue and lavage fluid from 3-yr-old rhesus monkeys were examined using histopathology and immunohistochemistry. Proximal bronchi, midlevel bronchi, and terminal/respiratory bronchioles were compared for immunohistochemical localization of CCSP in three-dimensional whole mounts as well as in paraffin and Araldite sections. Immunoreactive CCSP was found in nonciliated cells throughout the airway epithelium. Proximal and midlevel airways had the highest labeling. CCSP decreased in distal airways, and respiratory bronchioles had little to no CCSP. CCSP in the most distal airways was in tall cuboidal cells adjacent to the pulmonary artery. Although a large number of cells were present in the terminal bronchioles that would be classified as Clara cells based on morphology (nonciliated cells with apical protrusions), only a small number stained positively for immunoreactive CCSP. Semiquantitative analysis of Western blots indicated that changes in lavage CCSP are consistent with, and may be predictive of, overall CCSP levels in the airway epithelium in this primate species that is phylogenetically similar to humans.  相似文献   

11.
Previous studies of the intrapulmonary conducting airways of sheep and rabbit have demonstrated marked diversity in the epithelial populations lining them. Because studies of trachea and centriacinar regions of macaque monkeys suggested that primates may be even more diverse, the present study was designed to characterize the epithelial population throughout the airway tree of one primate species, the rhesus monkey. Trachea and intrapulmonary airways of the right cranial and middle lobes of glutaraldehyde/paraformaldehyde-infused lungs of five adult rhesus monkeys were microdissected following the axial pathway. Each branch was assigned a binary number indicating its specific location within the tree. The trachea and six generations of intrapulmonary airway from the right cranial lobe were evaluated for ultrastructure and quantitative histology as were those of the right middle lobe for quantitative carbohydrate histochemistry. Four cell types were identified throughout the tree: ciliated, mucous goblet, small mucous granule, and basal. The tallest epithelium lined the trachea; the shortest, the respiratory bronchiole. The most cells per unit length of basement membrane were in proximal intrapulmonary bronchi; the least, in the respiratory bronchiole. The nonciliated bronchiolar epithelial or Clara cell was restricted to respiratory bronchioles. Sulfomucins were present in the vast majority of surface goblet cells in the trachea and proximal bronchi. In proximal bronchi, neutral glycoconjugates predominated in glands and acidic glycoconjugates in surface epithelium. In terminal and respiratory bronchioles the ratio of acidic glycoconjugate to neutral glycoconjugate equaled that in proximal bronchi, although glands were not present. Sulfomucins were minimal in terminal airways. We conclude that the characteristics of the epithelial lining of the mammalian tracheobronchial airway tree are very species-specific. The lining of the rhesus monkey does not have the diversity in cell types in different airway generations observed in sheep and rabbit. Also, the populations lining these airways in the rhesus are very different from either the sheep or rabbit in number, proportions of different cell types, glycoconjugate content, and distribution of specific cell types.  相似文献   

12.
We examined the relationship between C-fiber-mediated, ozone-induced rapid shallow breathing and airway epithelial cell injury at different airway sites within the lower respiratory tract of conscious Wistar rats (n = 24). We combined an acute 8-h ozone inhalation with vagal perineural capsaicin treatment, a selective C-fiber conduction block, and 5-bromo-2'-deoxyuridine (BrdU) labeling as an index of epithelial injury. Vehicle-treated rats that inhaled ozone developed a rapid shallow breathing pattern during ozone inhalation, whereas the capsaicin-treated rats that inhaled ozone showed no changes in respiratory frequency. In vehicle-treated, ozone-exposed rats that developed rapid shallow breathing, a progressive increase in BrdU-labeling density (no. of BrdU-labeled cells/mm(2) airway) was observed starting at the bifurcation of the left main stem bronchi (central airway) and going down either a short or long airway path. In vehicle-treated, ozone-exposed rats, terminal bronchioles supplied by short and long airway paths had a similar degree of BrdU-labeling density that was significantly (P < 0.05) greater than the BrdU-labeling density of the proximal airways that supply them. In contrast, the attenuation of rapid shallow breathing produced by capsaicin treatment resulted in a significantly reduced BrdU-labeling density in the terminal bronchioles supplied by short airway paths compared with the terminal bronchioles supplied by long airway paths. Our data indicate that ozone-induced rapid shallow breathing protects large conducting airways while producing a more even distribution of injury to terminal bronchioles.  相似文献   

13.
Development of smooth muscle in conducting airways begins early in fetal life. Whereas the pattern and regulation of smooth muscle differentiation are well-defined, the impact of airway growth on the process is not. To evaluate the transformations in organization during postnatal growth, smooth muscle bundle organization (size, abundance, and orientation) was mapped in five generations of distal airways of infant rhesus monkeys (5 days and 1, 2, 3, and 6 mo old). On the basis of direct measurement of the bronchiole proximal to the terminal bronchiole, length increased by 2-fold, diameter by 1.35-fold, and surface area by 2.8-fold between 5 days and 6 mo of age. Smooth muscle bundle size was greater in proximal bronchioles than in respiratory bronchioles and did not change with age. However, relative bundle size decreased in proportion to airway size as the airways grew. Relative bundle abundance was constant regardless of airway generation or age. The distribution of smooth muscle bundle orientation changed with age in each airway generation, and there were significant changes in the terminal and respiratory bronchioles. We conclude that smooth muscle undergoes marked organizational changes as airways grow during postnatal development.  相似文献   

14.
Tissue in situ hybridization has been used on sections of developing rat lung to follow the cellular sites of mRNA expression for a protein identified only in bronchiolar Clara cells. The mRNA for this Clara cell protein (CCP) was first detected on gestational day 16 in only one of the two types of tubules existing in the lung at this developmental stage. During the next 2 days CCP mRNA expression increased uniformly only in the epithelium lining the respiratory tubules. By gestational day 19, CCP mRNA expression became limited to secretory epithelial cells lining the bronchi, and terminal bronchioles. By neonatal day 1, an intense hybridization signal was observed along all of the conducting airways, but it was irregular due to the fact that expression of the CCP gene was limited to the secretory epithelial cells. In adult rats, CCP mRNA was expressed not only in secretory cells of the intrapulmonary airways at all anatomical levels, but also in secretory epithelial cells lining the trachea and its glands, as well as in specific alveolar cells thought to be type II pneumocytes. These findings demonstrate that the regulation of the CCP gene during lung development is a complicated process and that the expression of CCP mRNA does not parallel exactly the sequential development of the airways.  相似文献   

15.
Evidence of absorptive or secretory ion transport in different respiratory regions of the mouse was sought by assessing the regional distribution of alpha-, beta-, and gamma-epithelial sodium channel (ENaC; Na(+) absorptive), cystic fibrosis transmembrane conductor regulator (CFTR), and Na(+)-K(+)-2Cl(-) cotransporter mRNAs. High levels of ENaC subunit expression were found in nasal surface epithelium and gland ducts. CFTR was expressed in both superficial nasal respiratory epithelium and glands. These results are consistent with basal amiloride-sensitive Na(+) absorption and cAMP-dependent Cl(-) secretion in murine nasal epithelia. Expression of all three ENaC subunits increased progressively from trachea to terminal bronchioles. Intermediate levels of CFTR and cotransporter expression in bronchial epithelium diminished in bronchioles. The low abundance of CFTR mRNA throughout murine pulmonary epithelium is consistent with functional data that attributes Cl(-) secretion predominantly to an alternative Cl(-) channel. alpha-ENaC as the only mRNA found in all regions of airway epithelia is consistent with the alpha-subunit as requisite for Na(+) absorption, and the increased expression of alpha-, beta-, and gamma-ENaC in distal airways suggests a greater absorptive capability in this region.  相似文献   

16.
The effects of vitamin A-deficiency and inflammation were studied in the conducting airways of Syrian golden hamsters. An important goal of the study was to characterize epithelial changes that occur early in vitamin A-deficiency, that might precede yet predispose to infection, and precipitate inflammatory changes in the lungs. Age-matched vitamin A-replete control and vitamin A-deprived hamsters were killed at 33 days of age (preweight-plateau); at 41 days of age (weight plateau-early weight loss); and at 48-55 days of age (prolonged weight plateau followed by weight loss). A tablet containing bromodeoxyuridine (BrdU) was implanted subcutaneously into each hamster 7 h before it was killed. No changes were seen in the conducting airway epithelium of vitamin A-deprived hamsters in the preweight plateau. However, labelling of secretory cells for BrdU was reduced 6-7 fold in the epithelium lining the lobar bronchus (p less than 0.0002) and the bronchioles (p less than 0.0001), and the proportions of ciliated cells were decreased (p less than 0.0001) at both airway levels in vitamin A-deficient hamsters in the weight plateau-early weight loss stage. Changes in cellular morphology were minimal in the intrapulmonary airway epithelium at this time but a few small focal patches of epidermoid metaplasia were seen in the tracheal epithelium. Small foci of inflammation were closely associated with the airways in the weight plateau, and the inflammation became more widespread when the deficiency was prolonged. The results suggest that the defense of the lungs to infection was impaired initially in the vitamin A-deficient hamsters by a widespread reduction in the numbers of ciliated cells throughout the epithelium of the conducting airways (trachea, bronchi, bronchioles). At the foci of inflammation, labelling of epithelial secretory cells for BrdU was greatly increased at all airway levels. A highly stratified cornifying epidermoid metaplasia developed in the tracheal epithelium, and goblet cell metaplasia developed in the cranial portion of the lobar bronchus, in association with submucosal inflammation. Goblet cell metaplasia appeared to be the only abnormality that was not reversed when vitamin A was restored to the diet.  相似文献   

17.
The effects of vitamin A-deficiency and inflammation were studied in the conducting airways of Syrian golden hamsters. An important goal of the study was to characterize epithelial changes that occur early in vitamin A-deficiency, that might precede yet predispose to infection, and precipitate inflammatory changes in the lungs. Age-matched vitamin A-replete control and vitamin A-deprived hamsters were killed at 33 days of age (preweight-plateau); at 41 days of age (weight plateau-early weight loss); and at 48–55 days of age (prolonged weight plateau followed by weight loss). A tablet containing bromodeoxyuridine (BrdU) was implanted subcutaneously into each hamster 7 h before it was killed. No changes were seen in the conducting airway epithelium of vitamin A-deprived hamsters in the preweight plateau. However, labelling of secretory cells for BrdU was reduced 6–7 fold in the epithelium lining the lobar bronchus (p< 0.0002) and the bronchioles (p< 0.0001), and the proportions of ciliated cells were decreased (p<0.0001) at both airway levels in vitamin A-deficient hamsters in the weight plateau-early weight loss stage. Changes in cellular morphology were minimal in the intrapulmonary airway epithelium at this time but a few small focal patches of epidermoid metaplasia were seen in the tracheal epithelium. Small foci of inflammation were closely associated with the airways in the weight plateau, and the inflammation became more widespread when the deficiency was prolonged. The results suggest that the defense of the lungs to infection was impaired initially in the vitamin A-deficient hamsters by a widespread reduction in the numbers of ciliated cells throughout the epithelium of the conducting airways (trachea, bronchi, bronchioles). At the foci of inflammation, labelling of epithelial secretory cells for BrdU was greatly increased at all airway levels. A highly stratified cornifying epidermoid metaplasia developed in the tracheal epithelium, and goblet cell metaplasia developed in the cranial portion of the lobar bronchus, in association with submucosal inflammation. Goblet cell metaplasia appeared to be the only abnormality that wasnot reversed when vitamin A was restored to the diet. This is contribution no. 2911 from the Pathobiology Laboratory  相似文献   

18.
Parallel time courses of clinical and behavioural parameters and levels of plasma substance P-like immunoreactivity (SPLI-PI) were studied in arthritic rats (adjuvant induced arthritis, AIA, a chronic pain model). Acute (14 and 21 post-inoculation days,PI) and post-acute (42 days PI) phases of the syndrome were investigated. These data were compared with those obtained in a control situation (inoculation day). In a second experimental series, levels of substance P-like immunoreactivity in cerebrospinal fluid (SPLI-CSF) were determined at the same stages of AIA. In arthritic rats SPLI-PI was strongly enhanced (X4) as early as 14 days PI and remained increased (X4) at all stages studied, whereas SPLI-LCR was significantly increased (X2) only 21 days PI and returned to control levels at 42 days PI. These data suggest that SP could be distributed in two different pools, a peripheral one of inflammatory origin, and a central one which could be more specific to the chronic pain situation.  相似文献   

19.
目的比较实验动物呼吸系统主要器官的组织学特征,为制定实验动物病理检测标准、以及毒理学、新药安全性评价提供依据。方法选取实验动物质量国家检测标准检测合格的恒河猴30只、昆明小鼠20只、SD大鼠20只、日本大耳白兔18只、比格犬16只、树鼩20只。除昆明小鼠采用颈椎脱臼致死外,其余动物麻醉后放血处死和病理解剖,对气管、肺脏进行病理大体检查和取材,常规病理制片,进行HE染色、特殊染色和免疫组化染色,显微镜下观察气管、肺脏的组织结构和细胞结构异同。结果 (1)实验动物气管上皮杯状细胞有差异:恒河猴、比格犬、日本大耳白兔杯状细胞较多,大鼠、小鼠、树鼩则较少或无。上皮分泌的黏液类型以中性黏液为主,比格犬杯状细胞分泌的黏液类型有中性黏液和酸性黏液。(2)实验动物黏膜下腺泡分布有差异:比格犬黏膜下层的腺泡最多,恒河猴、大鼠、小鼠、树鼩腺泡数量偏少,日本大耳白兔黏膜下层的混合腺泡最少。(3)实验动物的肺内支气管分支有差异:比格犬、恒河猴、日本大耳白兔由叶支气管、段支气管、小支气管、细支气管、终末细支气管和呼吸性细支气管组成,树鼩、大鼠、小鼠只由细支气管、终末细支气管和呼吸性细支气管组成。(4)实验动物细支气管组织结构有差异:恒河猴、比格犬的细支气管平滑肌为完整环形平滑肌层,没有缺失,而大鼠、小鼠、树鼩及日本大耳白兔的细支气管平滑肌薄或缺失。恒河猴、树鼩、大鼠细支气管有少量杯状细胞,其余实验动物均无杯状细胞。(5)实验动物Clara细胞形态有差异:比格犬Clara细胞呈立方形,其余动物呈柱状。结论实验动物呼吸系统组织结构的质是相同的,差异在于量的不同。研究人员在制定病理学检测标准、实验研究、药物安全性评价时应予充分考虑。  相似文献   

20.
It has been described the cytology of the following parts of the respiratory system of some South American primates:Callithrix jacchus andCallithrix argentata melanura. The nasal cavities are divided into three parts: a vestibule, covered with a stratified nonkeratinized squamous epithelium; the respiratory portion, consisting of a pseudostratified columnar ciliated epithelium with goblet cells and the olfactory portion which is also covered with a high respiratory epithelium without goblet cells. The trachea is lined with a mucous membrane, whose epithelium is pseudostratified columnar ciliated with scarce goblet cells in the proximal portion unlike to the distal one. In the dorsal portion of the trachea, at the level of the gap between the two ends of incomplete cartilaginous rings, the epithelial lining is of transitional type. The incomplete hyaline cartilaginous rings present centers of calcification. The right and left lungs consist of two and three lobes respectively characteristic for these species, but they are not divided into lobules by connective tissue as in other ones. The bronchi, bronchioles and the respiratory portion, respiratory bronchioles, alveolar ducts, alveolar sacs, and alveoli present the typical respiratory structure with exception of their cartilaginous configuration; the cartilage continues as far as the respiratory bronchioles and alveolar ducts. These last structures are formed by a thin squamous epithelium, in which we observed two types of alveolar lining cells. This work was supported by grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET) and EHIGE program. Postgraduated fellow from CONICET. established Investigator and Director of EHIGE (Estudio Histológico comparado del Sistema de Glándulas Endócrinas) from CONICET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号