首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
H Haruyama  K Wüthrich 《Biochemistry》1989,28(10):4301-4312
The three-dimensional structure of recombinant desulfatohirudin in aqueous solution was determined by 1H nuclear magnetic resonance at 600 MHz and distance geometry calculations with the program DISMAN. The input for the structure calculations was prepared on the basis of complete sequence-specific resonance assignments at pH 4.5 and 22 degrees C and consisted of 425 distance constraints from nuclear Overhauser enhancements and 159 supplementary constraints from spin-spin coupling constants and from the identification of intramolecular hydrogen bonds. Residues 3-30 and 37-48 form a molecular core with two antiparallel beta-sheets and several well-defined turns. The three disulfide bonds 6-14, 16-28, and 22-39 were identified by NMR. In contrast to this well-defined molecular core, with an average root mean square distance for the polypeptide backbone of 0.8 A for a group of nine DISMAN solutions, no preferred conformation was found for the C-terminal segment 49-65, and a loop consisting of residues 31-36 is not uniquely constrained by the NMR data either. These structural properties of recombinant desulfatohirudin coincide closely with the previously described solution conformation of natural hirudin, but the presence of localized differences is indicated by chemical shift differences for residues Asp 5, Ser 9, Leu 15, Asp 53, Gly 54, and Asp 55.  相似文献   

2.
The complete assignments of all the proton magnetic resonance signals from each NH-CalphaH-CbetaH2 moiety in a complex peptide containing several residues of the same type has not yet been achieved without specific or stereospecific isotopic enrichment. We report the sequencing and proton magnetic resonance spectral assignments, including those of 4 aromatic residues, of tyrocidine A, an analog of the decapeptide gramicidin S. Two complementary methods, proton-proton nuclear Overhauser enhancements and scalar decoupling, evaluated by two distinct forms of difference double resonance, were used. All chemical shifts, scalar coupling constants, and [1H:1H] nuclear Overhauser enhancements for the backbone protons are reported. The [1H:1H] nuclear Overhauser enhancements are consistent with tyrocidine A possessing a beta-I turn/beta-II' turn/antiparallel beta-pleated sheet conformation. In addition to the previously proposed nuclear Overhauser enhancement criteria for beta turns and antiparallel beta sheets, another criterion for identifying the antiparallel beta sheet is demonstrated; namely, the nuclear Overhauser enhancement between 2 CalphaH protons of the central resisdues, in this case the Phe7CalphaH and Orn2CalphaH.  相似文献   

3.
High-resolution proton nuclear magnetic resonance spectra of the trp repressor of Escherichia coli under various conditions are reported and analysed. The spectrum of the denatured state agrees with that predicted from the amino acid composition, with the exception of the two histidine residues, which have different chemical shifts although they titrate normally. The spectrum of the native protein shows the presence of extensive secondary and tertiary structure. Using information from chemical shifts, numbers of protons, titration behaviour, homonuclear chemical-shift-correlated spectroscopy and nuclear Overhauser enhancement correlated spectroscopy, most of the aromatic protons have been assigned to residue type. Further, about 30% of the aliphatic protons have been assigned to residue type by two-dimensional spectroscopy. Nuclear Overhauser enhancements establish that high-field methyl groups belonging to a valine residue lie directly over an aromatic ring.  相似文献   

4.
Conformation of an RNA pseudoknot.   总被引:15,自引:0,他引:15  
The structure of the 5' GCGAUUUCUGACCGCUUUUUUGUCAG 3' RNA oligonucleotide was investigated using biochemical and chemical probes and nuclear magnetic resonance spectroscopy. Formation of a pseudoknot is indicated by the imino proton spectrum. Imino protons are observed consistent with formation of two helical stem regions; nuclear Overhauser enhancements between imino protons show that the two stem regions stack to form a continuous helix. In the stem regions, nucleotide conformations (3'-endo, anti) and internucleotide distances, derived from two-dimensional correlated, spectroscopy and two-dimensional nuclear Overhauser effect spectra, are characteristic of A-form geometry. The data suggest minor distortion in helical stacking at the junctions of stems and loops. The model of the pseudoknot is consistent with the structure originally proposed by Pleij et al.  相似文献   

5.
The 17-residue peptide FKLGGRDSRSGSPMARR derived from myelin basic protein, containing an epitope encephalitogenic in rhesus monkey, has been studied in aqueous solution by high-resolution one- and two-dimensional carbon and proton nuclear magnetic resonance spectroscopy. The resonances of the spectra from both nuclei were assigned with the aid of two-dimensional correlated spectroscopy, pH and solvent titrations, and one-dimensional spin-decoupling techniques and by comparison of the spectra of the heptadecapeptide with those of a phosphorylated form of the peptide, the pentadecapeptide FKLGGRDSRSGSPMA, and the nonapeptide FKLGGRDSR. Amide proton temperature coefficients, coupling constants, 13C- spin-lattice relaxation times, and nuclear Overhauser effect data suggest the existence of three structured regions comprising residues 3-6, 7-12, and 12-14 in the solution conformations of the encephalitogenic heptadecapeptide.  相似文献   

6.
δ-Haemolysin in mixed micelles with perdeuterated dodecylphosphocholine was investigated with two-dimensional proton nuclear magnetic resonance experiments at 500 MHz. A single set of resonance lines was observed for the micelle-bound polypeptide, indicating that δ-haemolysin adopts a single conformation in this environment. Nearly complete, sequence-specific assignments were obtained for the segment 5–23 of this 26 residue polypeptide chain. From the sequential connectivities and numerous medium-range nuclear Overhauser effects this central portion of the molecule was found to form an extended helix with pronounced amphipathic distribution of polar and nonpolar amino acid side-chains.  相似文献   

7.
Dermorphin, a natural peptide opioid containing a D-Ala2 residue, has been studied in dimethyl sulfoxide (DMSO) solution by means of several one-dimensional and two-dimensional 1H nuclear magnetic resonance (NMR) methods at various fields from 80 to 600 MHz. The combined use of conventional NMR parameters and of nuclear Overhauser effect effects points to an essentially extended structure. This conformation may be, in part, the result of strong interaction of the amide groups with DMSO molecules.  相似文献   

8.
A two-dimensional Fourier transform nuclear magnetic resonance study of the ribosomal protein E-L30 is reported. Five two-dimensional techniques, namely: nuclear magnetic resonance J-resolved spectroscopy, correlated spectroscopy, double quantum spectroscopy, relayed coherence transfer and nuclear Overhauser enhancement spectroscopy were used. Qualitative inspection of the spectra obtained by these techniques provided evidence that the E-L30 molecule has a well-defined structure in solution. This analysis indicated that, despite the fact that the protein is stable only at moderate temperatures and neutral pH, a structural analysis of the molecule would be feasible. A detailed analysis of the spectra permitted unambiguous discrimination between the spin systems of different amino acids, resulting in residue-specific resonance assignments. We were able to assign all resonances of all six threonine, four valine, five alanine, two histidine, two serine, one phenylalanine, one asparagine and one aspartic acid residue of E-L30. Complete resonance assignment was obtained for two glycine residues. Partial assignments became available for all six isoleucine, three glycine and one glutamine residue. These results form a sound basis for the structure determination of the protein described in the accompanying paper.  相似文献   

9.
本文用300MHz核磁共振仪对反向DPPC脂囊泡中短杆菌肽S进行了研究.用二维相关谱(COSY)和二维NOE谱(NOESY)对反向脂囊泡中短杆菌肽S的共振峰进行了识别,短杆菌肽S所有的共振峰都被指定.并在此基础上,通过NOESY及一维自旋回波谱对短杆菌肽S在反向脂囊泡中的构象进行了分析.结果表明,短杆菌肽S在反向脂囊泡中不再为平面环状结构,而是有某种程度的折叠.  相似文献   

10.
We have determined by two-dimensional nuclear magnetic resonance studies and molecular mechanics calculations the three-dimensional solution structure of a 21 residue oligonucleotide capable of forming a hairpin structure with a loop of three thymidine residues. This structure is in equilibrium with a duplex form. At 33 degrees C, low ionic strength and in the presence of MgCl2 the hairpin form dominates in solution. Six Watson-Crick base pairs are formed topped by the loop structure. The residues 1-3 and 18-21 are not complementary and form dangling ends. Distance constraints have been derived from nuclear Overhauser enhancement measurements. These, together with molecular mechanics calculations, have been used to determine the structure. We do not observe stacking of thymidine residues either over the 3' or the 5' end of the stem.  相似文献   

11.
Proton nuclear magnetic resonance (1H NMR) assignments for the murine epidermal growth factor (mEGF) in aqueous solution were determined by using two-dimensional NMR at pH 3.1 and 28 degrees C. The assignments are complete for all backbone hydrogen atoms, with the exception of the N-terminal amino group, and for 46 of the 53 side chains. Among the additional seven amino acid residues, three have complete assignments for all but one side-chain proton, and between two and four protons are missing for the remaining four residues. The sequential assignments by nuclear Overhauser effect spectroscopy are consistent with the chemically determined amino acid sequence. The NMR data show that the conformations of both the Tyr3-Pro4 and Cys6-Pro7 peptide bonds are trans in the predominant solution structure. Proton-deuterium exchange rate constants were also measured for 13 slowly exchanging amide protons. The information presented here has been used elsewhere to determine the three-dimensional structure of mEGF in aqueous solution.  相似文献   

12.
Two-dimensional nuclear magnetic resonance techniques were used to obtain residue- and sequence-specific assignments in the 1H spectrum of the single-stranded DNA-binding protein encoded by gene V of the filamentous phage IKe (IKe GVP). The residue-specific assignments are based on the analysis of J-correlated spectra, i.e. correlated spectroscopy and homonuclear-Hartmann-Hahn total correlated spectroscopy. Complete assignments of side-chain spin systems, e.g. long side-chains, were, to a major part, derived from two-dimensional spectra obtained by means of the latter technique. Sequence-specific residue assignments were obtained for the two neighbouring residues V41 and Y42, and the amino acid sequence segment encompassing residues S17 through I29. The structure of this segment, a beta-loop, was deduced from the interresidue nuclear Overhauser effect pattern. Residues S17 through V19 and P26 through I29 form an anti-parallel beta-ladder segment, whereas residues Q21 to K25 constitute the loop region. The beta-loop is expected to project into the solution and is intimately involved in binding to single-stranded DNA; it is therefore designated the "DNA-binding wing". By analogy with the structure of the DNA-binding wing deduced from IKe GVP, a similar structure is proposed for the corresponding domain of the gene V protein encoded by the filamentous phage Ff for which, from X-ray diffraction studies, a three-dimensional structure has been deduced. Essential differences appear to exist between the DNA-binding domain in the X-ray structure and that proposed in this paper. Possible reasons for these differences are discussed.  相似文献   

13.
Kringle 4 is an autonomous structural and folding domain within the proenzyme plasminogen. Homologous domains are found throughout the blood clotting and fibrinolytic proteins. In this paper, we present the almost complete assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the kringle 4 domain of human plasminogen. A detailed structural analysis has been completed. The sequential pattern of nuclear Overhauser enhancements indicated little regular secondary structure but rather a series of turns and loops connecting beta-strands. A small stretch of antiparallel beta-sheet was identified between the residues 61 to 63 and 71 to 73 and the close proximity of other strands was determined from two-dimensional nuclear Overhauser enhancement spectra. Slowly exchanging amide (NH) resonances were found to be associated with residues of the beta-sheet and neighbouring strands that support the hydrophobic core of the domain. A total of 526 interproton distance constraints and two hydrogen bonds were specified as input to the distance geometry program DISGEO. Tertiary structures were produced that were consistent with the n.m.r. data. The structures were compared with that of our earlier model based on n.m.r. studies and with that of prothrombin fragment 1 determined crystallographically.  相似文献   

14.
The conformational proclivity of leucine and methionine enkephalinamides in deuterated dimethyl sulphoxide has been investigated using proton magnetic resonance at 500 MHz. The resonances from the spin system of the various amino acid residues have been assigned from the 2-dimensional correlated spectroscopy spectra. The temperature variation of the amide proton shifts indicates that none of the amide proton is intramolecularly hydrogen-bonded or solvent-shielded. The analysis of vicinal coupling constants,3JHN.C 2H,along with temperature coefficients and the absence of characteristic nuclear Overhauser effect cross peaks between the NH protons reveal that there is no evidence of the chain folding in these molecules. However, the observation of nuclear Overhauser effect cross peaks between the NH and the CαH of the preceding residue indicates preference for extended backbone conformation with preferred side chain orientations particularly of Tyr and Phe in both [Leu5]- and [Met5]-enkephalinamides.  相似文献   

15.
The snake venom protein echistatin is a potent inhibitor of platelet aggregation. The inhibitory properties of echistatin have been attributed to the Arg-Gly-Asp sequence at residues 24-26. In this paper, sequence-specific nuclear magnetic resonance assignments are presented for the proton resonances of echistatin in water. The single-chain protein contains 49 amino acids and 4 cystine bridges. All of the backbone amide, C alpha H, and side-chain resonances, except for the eta-NH of the arginines, have been assigned. The secondary structure of the protein was characterized from the pattern of nuclear Overhauser enhancements, from the identification of slowly exchanging amide protons, from 3JC alpha H-NH coupling constants, and from circular dichroism studies. The data suggest that the secondary structure consists of a type I beta-turn, a short beta-hairpin, and a short, irregular, antiparallel beta-sheet and that the Arg-Gly-Asp sequence is in a flexible loop connecting two strands of the distorted antiparallel beta-sheet.  相似文献   

16.
W Eberle  W Klaus  G Cesareni  C Sander  P R?sch 《Biochemistry》1990,29(32):7402-7407
The complete resonance assignment of the ColE1 rop (rom) protein at pH 2.3 was obtained by two-dimensional (2D) proton nuclear magnetic resonance spectroscopy (1H NMR) at 500 and 600 MHz using through-bond and through-space connectivities. Sequential assignments and elements of regular secondary structure were deduced by analysis of nuclear Overhauser enhancement spectroscopy (NOESY) experiments and 3JHN alpha coupling constants. One 7.2-kDa monomer of the homodimer consists of two antiparallel helices connected by a hairpin loop at residue 31. The C-terminal peptide consisting of amino acids 59-63 shows no stable conformation. The dimer forms a four-helix bundle with opposite polarization of neighboring elements in agreement with the X-ray structure.  相似文献   

17.
Assignments of the six sets of aromatic ring protons and four high-field-shifted methyl group protons of the C-terminal fragment of calmodulin, residues 78-148, was achieved by a combination of one and two-dimensional NMR spectroscopic methods. A full spectral analysis of the aromatic region in terms of chemical shifts and scalar coupling constants was achieved and confirmed by spectral simulation. A three-dimensional structural model of the C-terminal fragment was constructed by interactive computer graphics techniques and combined with nuclear Overhauser enhancements to propose sequence assignments for all aromatic and high-field-shifted methyl groups. This computer-generated three-dimensional model was generally supported by the fact that it qualitatively accounted for many of the ring-current-shifted proton resonances and the intraresidue and interresidue nuclear Overhauser enhancements.  相似文献   

18.
delta-Haemolysin in mixed micelles with perdeuterated dodecylphosphocholine was investigated with two-dimensional proton nuclear magnetic resonance experiments at 500 MHz. A single set of resonance lines was observed for the micelle-bound polypeptide, indicating that delta-haemolysin adopts a single conformation in this environment. Nearly complete, sequence-specific assignments were obtained for the segment 5-23 of this 26-residue polypeptide chain. From the sequential connectivities and numerous medium-range nuclear Overhauser effects this central portion of the molecule was found to form an extended helix with pronounced amphipathic distribution of polar and nonpolar amino acid side-chains.  相似文献   

19.
Two-dimensional proton nuclear magnetic resonance nuclear Overhauser effect experiments have been performed at a series of mixing times on proflavine and on a DNA octamer duplex [d-(GGAATTCC)]2 in solution. Using the complete matrix approach recently explored theoretically (Keepers and James, 1984), proton-proton internuclear distances were determined quantitatively for proflavine from the two-dimensional nuclear Overhauser effect results. Since proflavine is a rigid molecule with X-ray crystal structure determined, interproton distances obtained from the two-dimensional nuclear Overhauser effect experiments in solution can be compared with those for the crystalline compound agreement is better than 10 %. Experimental two-dimensional nuclear Overhauser effect spectral data for [d-(GGAATTCC)]2 were analyzed by comparison with theoretical two-dimensional nuclear Overhauser effect spectra at each mixing time calculated using the complete 70 × 70 relaxation matrix. The theoretical spectra were calculated using two structures: a standard B-form DNA structure and an energy-minimized structure based on similarity of the octamer's six internal residues with those of [d-(CGCGAATTCGCG)]2, for which the crystal structure has been determined. Neither the standard B-DNA nor the energy-minimized structure yield theoretical two-dimensional nuclear Overhauser effect spectra which accurately reproduce all experimental peak intensities. But many aspects of the experimental spectra can be represented by both the B-DNA and the energy-minimized structure. In general, the energy-minimized structure yields theoretical two-dimensional nuclear Overhauser effect spectra which mimic many, if not all, features of the experimental, spectra including structural characteristics at the purine-pyrimidine junction.  相似文献   

20.
The solution structure of a 12 base-pair DNA duplex containing the wt-lac promoter Pribnow sequence TATGTT has been studied by two-dimensional nuclear magnetic resonance spectroscopy. Proton assignments for the 24 sugar and base residues were obtained from two-dimensional correlated nuclear magnetic resonance and two-dimensional nuclear Overhauser effect spectra in both 2H2O and H2O, and by two-dimensional relayed coherence transfer nuclear magnetic resonance spectroscopy experiments. Time-dependent, two-dimensional nuclear Overhauser effect spectra were used to determine the initial cross-relaxation rates between 212 pairs of assigned protons, leading to 212 interproton distances in the double helix (8 to 9 per nucleotide). These distance constraints, and known bond lengths and angles, were entered into a distance matrix. After smoothing the bounds of the distance matrix, 12 trial matrices within the bounds constraints were independently generated and embedded in three-dimensional space using a distance geometry algorithm, to generate 12 trial structures. These trial structures were then refined until they no longer violated the distance matrix. The resulting structures are very similar at the local base-pair and nearest-neighbor base-pair level, but exhibit increasing variation at more distant and global levels. At the nearest-neighbor level, the A to T step and the G to T step within the Pribnow hexamer, as well as the G to T step preceding the hexamer, all exhibit very low screw pitch, i.e. 5(+/- 6) degrees. Conversely, the T to G step in the center of the promoter has a large screw pitch (47(+/- 2) degrees) and the T to G step at the 3' end of the promoter has a very large screw pitch (60(+/- 3) degrees). The limitations of nuclear magnetic resonance spectroscopy distance determination of structure are discussed in terms of resolution and spectral overlap of two-dimensional nuclear Overhauser effect crosspeaks. In the present duplex, the inability to measure several 1'-2' and 1'-2" distances resulted in underdetermination of the precise local sugar conformation for seven of the 24 residues, although the spatial position of all sugars was well defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号