首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The annual cycle of abundance, growth and sexual reproductionof the scyphomedusa Aurelia aurita was examined over a 12 monthperiod in an isolated, shallow, brackish, man-made body of water:Horsea Lake, England. Strobilation started in December and ephyraewere present through June in varying numbers, suggesting a 7month period of near-continuous recruitment. Horsea Lake hasa dense A.aurita population, with the peak abundance of 24.9m–3 occurring in mid-May. Medusae (>10 mm) were presentin the water column from March through January. Maximum belldiameter of 105 mm was observed in late September. However,medusa growth was very poor (G ranged between –0.03 and0.07 day–1 over a 12 month period), and monthly mean belldiameters were typically <50 mm. For most of the year, theabundant A.aurita population was most likely severely food limitedas a result of a numerically and species-poor mesozooplanktoncommunity dominated by the calanoid copepods Acartia margalefiand Acartia tonsa. Nevertheless, the very small A.aurita medusaewere still able to attain sexual maturity and reproduce. Ripefemale medusae carrying fertilized eggs and planula larvae werefirst observed in May and June, although the main period ofplanula larva production was September-December. In November,all females were ripe, the smallest being 19–20 mm belldiameter. At both Horsea Lake and a nearby productive estuary,Southampton Water, planula larva production increased linearlywith wet weight, although compared with the larger A.auritamedusae from Southampton Water, reproductive output at HorseaLake was low. Aurelia aurita in Horsea Lake showed plasticityin its population characteristics in response to environmentalconditions, with both fecundity and size to maturity varyingon a seasonal basis. Medusae appeared to partition the availablefood resources into either somatic growth when food was abundantor reproductive effort when food was scarce.  相似文献   

2.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

3.
Interannual changes in the biomass of the Black Sea gelatinous zooplankton   总被引:3,自引:0,他引:3  
The 15 year changes in the total gelatinous biomass consistof a general trend to increase, from 250 gm–2 in 1980to 2500 g m–2 in 1995, and fluctuations with a periodof –4 years performed against the background of this trendin the upper 150 m layer. Different species occupying distincttrophic niches form these peaks. When represented as the percentageof the total zooplankton biomass, Aurelia aurita and Mnemiopsisleidyi exhibit the contra-phase fluctuations where a sharp increasein M.leidyi is accompanied by a decrease in the A.aurita biornass.  相似文献   

4.
Clupeoid larvae were collected on eight cruises between February1984 and February 1985 in the coastal waters of Israel. Fromanalysis of daily growth increments of otoliths, growth ratesof the abundant clupeoids, Engraulis encrasicolus, Sardina pilchardusand Sardinella aurita were found to be 0.55 mm day–1,0.67 mm day–1 and 0.60 mm day–1, respectively, duringthe first month after hatching. Ingestion rates were estimatedusing an equation from the literature relating ingestion andgrowth of larval fish. Ingestion calculated for populationsof fish larvae in pelagic waters ranged from 0 to >23 mgC m–2 day–1 with maximum rates observed in April.Annual ingestion by larval fish at a pelagic station near Haifawas calculated to be 2.2 g C m–2 year–1, 10–20%of annual primary production estimated from 14C uptake.  相似文献   

5.
The abundance, biomass and size structure of the scyphomedusa,Aurelia aurita, was measured during two research cruises tothe northwestern Black Sea (July–August 1995 and April–May1997). Average biomass of Aurelia was relatively constant (132–179g wwt m–2) throughout the investigation period and similarto previous years. Abundance and biomass at individual stationsappeared to be unrelated to temperature and salinity when thelatter exceeded ~13. Biomass was low at coastal stations inthe plume of the Danube where depth was <20 m and salinitydropped to <11. The spring cruise (April–May) coincidedwith, or just followed the peak of strobilation. The summercruise (July–August) took place near the beginning ofplanulae larvae release. The population size structure was dominatedby small individuals in spring, while large medusae prevailedmainly in late summer. Aurelia was, on average, larger at deepwater stations during summer, suggesting that per capita foodsupply was higher further offshore. The individual body massincreased from spring through summer. Accordingly, the volume(wet wt) to length (bell diameter) relation changed significantly.If all medusae measured throughout the seasons were pooled,volume (V, in cm3) was related to length (L, in cm) accordingto V = 0.08 L2.71, which is similar to measurements conductedin other coastal areas. In contrast to the common conjecture,we did not find inverse relations between biomasses of Aureliaand the combjelly Mnemiopsis leidyi. Preliminary feeding experimentsindicate that Aurelia may feed upon small Mnemiopsis. The significanceof indirect trophic relations and direct feeding interactionsamong the gelatinous zooplankton in the Black Sea has importantconsequences for the energy flow along the food web and, therefore,needs further study.  相似文献   

6.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

7.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

8.
Fluxes of diatoms in the Dona Paula Bay, west coast of India   总被引:2,自引:0,他引:2  
Sediment traps were deployed at a station in the Dona PaulaBay to collect sedimenting particles at weekly intervals fromNovember to May during 1995–1997. Sedimented particleswere analysed for total diatom flux, chlorophyll a (Chl a) andparticulate organic carbon (POC). The highest diatom flux wasrecorded in April–May for both the years. Fluxes of diatomsvaried from0.6 x 104 cells m–2 day–1 (November 1995)to 121.47 x 104 cells m–2 day–1 (December 1996).In all, 19 diatom genera were identified in the sedimented material.Navicula, Nitzschia, Pleurosigma, Licmophora, Coscinodiscus,Rhizosolenia and Surirella were the most abundant genera inthe sedimented material throughout the sampling period. Meanflux of POC and diatom carbon was 251 and 0.39 mg C m–2day–1, respectively. The diatom carbon accounted for 0.15%of the POC flux. Mass flux of diatoms showed significant negativecorrelation with the concentration of nitrate and phosphate.This suggests that the nutrient concentration played an importantrole in influencing the sedimentation of diatoms at this coastalstation.  相似文献   

9.
Growth and maturity development of the moon jellyfish. Aureliaaurita, were recorded in Vgsbpollen, a small and semi-enclosedbay on the Norwegian west coast, and compared to those of medusaetransferred to excess food and starving conditions, respectively.Mesozooplankton were extremely scarce in Vgsbpollen. The abundanceand biomass of the medusae in the poll were higher than thosetypicallyfound in open waters, reaching a maximum of 22 ind.m–3 and 710 mg C m–3 in June. The average diameterof medusae in the p increased to 8 cm until the last part ofJune, with an instantaneous growth rate between 1.5 and 20%day–1, thereafter retarding somewhat, giving a negativegrowth rate of up to 2.6% day–1. Starving medusae showeda negative growth rate ofup to 13.4% day–1, and all thernedusae were dead after 49 days. Well-fed medusae showed avery stable growth over a 56 day period, diverging from thepollpopulation from early June, and with a growth rate between3.8 and 9.8% day–1. Medusae from the pollpopulation begancarrying planulae on their oral arms when at least 5 cm in diameter,whereas not even the largest medusa of 15.6 cm diameter amongthose in the well-fed group produced any planulae. For the firsttime, it is thus explicitly shown that thesize and maturityof A.aurita are externally controlled through food availability.Scarcity of food reduces the growth rate, but also changes theenergy allocation towards reproduction, which thus occurs ata smaller size than for well-fed rnedusae. Its plasticity makesit possible for this species to exploit environments with lowadvection of food and develop high abundance in such environments,without losing fecundity.  相似文献   

10.
Oikopleura longicauda occurred throughout the year in ToyamaBay, southern Japan Sea, and analysis of its size compositionand maturity revealed that reproduction was continuous overtheyear. Somatic growth production (Pg) varied with season from0.03 to 103 mg carbon (C) m–2day–1 (annual Pg 4.5g C m–2), and house production (Pe) from 0.11 to 266 mgC m–2 day–1 (annualPe 11.3 g C m–2). The annualPg/B ratio was 176. Compared with production data of some predominantzooplankton species in Toyama Bay, it is suggested that despitetheir smaller biomass, appendicularians are an important secondaryproducer.  相似文献   

11.
Production of Penilia avirostris in Kingston Harbour, Jamaica   总被引:2,自引:0,他引:2  
The cladoceran Penilia avirostris is one of the more abundantand widespread members of the crustacean zooplankton in nearshoretropical and subtropical waters. Its abundance, biomass, fecundity,development rate and production were estimated in Kingston Harbour,Jamaica, during an 18 month period. Mean annual abundance ofPenilia was 1821 m–3, while biomass (excluding eggs/embryos)was 2.87 mg ash-free dry-weight (AFDW) m–3 (43.1 mg AFDWm–2), accounting for 13% of the copepod community biomass.Fecundity increased with body size. There was no clear seasonalpattern of abundance, size or fecundity, nor were physical orbiological variables correlated to these variations. Developmenttime averaged 20.5 h for juveniles and 41.4 h for adult femalesduring incubations; there was no clear evidence of a diel patternto molting. Growth rate appeared to be exponential, with correspondingsomatic growth rates, averaging 0.27 day–1 for juveniles,and 0.34 day–1 for somatic plus reproductive growth inadult females. Annual production was estimated as 173 kJ m–2year–1,  相似文献   

12.
Carbon (C) fixation and nitrogen (N) assimilation rates havebeen estimated from 14C and 15N techniques for a 12 month periodin a Scottish sea loch. The maximum rate of nitrogen assimilated(29.92 mmol N m–2 day–1) was in April at the mostseaward station; similar high rates were experienced duringMay at the other stations. Carbon fixation rates were maximal(488–4047 mg C m–2day–1) at the time of highphytoplankton biomass (maximum 8.3 mg m–3 chlorophylla) during May, whilst nitrate concentrations remained >0.7µ.mol l–1. C:N assimilation ratios suggest nitrogenlimitation only during the peak of the spring bloom, althoughat times nitrogen (nitrate and ammonium) concentration fellto 0.2 µmol l–1 in the following months. The verticalstability of the water column, influenced by tidal and riverineflushing, varied along the axis of the loch, resulting in markeddifferences between sampling stations. Although ammonium waspreferentially assimilated by phytoplankton, >50% of productionwas supported by nitrate uptake and only during the summer monthswas the assimilation of ammonium quantitatively important.  相似文献   

13.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

14.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

15.
Two planktonic cyclopoid copepods (Tropocyclops prasinus andMesocyclops longisetus) were raised in the laboratory to obtainlife history information (duration of embryonic and post-embryonicdevelopment, reproductive performance, longevity, and stage-specificlength and weight values). Animals were maintained at 20 and25°C, and fed ad libitum. Development times were temperaturedependent when food was not limiting, with shorter periods ofembryonic and post-embryonic development and decreased longevityat 25°C. Laboratory data on the duration of developmentand biomass, together with population dynamics data obtainedin the field, were used to estimate summer and winter biomassand production of these species in a shallow reservoir, LagoaDourada, Brazil. The maximum production rate of T. prasinus,attained during summer, was 2.8 mg dry weight (DW) m–3day–1 and the highest daily production:biomass (P:B) ratiowas 0.29, whereas for M. longisetus the maximum production ratewas 1.4 mg DW m–3 day–1 and the highest daily P:Bratio was 0.39, in the winter. Over short time intervals (everyother day), there was great variability of the species productionrates. Species production rates were low compared to valuesreported in the literature for the same or other species ofequivalent sized copepods from both tropical and subtropicalregions.  相似文献   

16.
The growth rate of a population of Euphausia lucens from thewest coast of South Africa was estimated from laboratory studiesand from monthly size-frequency distributions of samples collectedover a 1-year period. Laboratory studies indicated that growthrates ranged from 0.131 (larvae) to 0.047 mm day–1 (juveniles),while size-frequency distributions suggested a growth rate of{small tilde}0.026 mm day–1 for the adults. The mean annualbiomass from the inshore, intermediate and offshore regionsranged from 9.75 to 47.29 mg dry wt m–3 with the highestbiomass being found in the inshore region. Calyptopis larvaewere present for most months of the year, indicating continuousrecrwtment. The relative contribution of flesh, moults and eggsto the total annual production was estimated separately forall three regions. Production due to growth (Pg) was estimatedto be 92.71–185.60 mg dry wt m–3 year–1, whileexuviai production (Pe) varied between 60.01 and 281.38 mg drywt m year Production of eggs (Pr) was estimated to range from5.07 to 12.39 mg dry wt m year the lowest value being obtainedin the inshore region. Moult production represented {small tilde}6times the mean biomass in each region, while the P/B ratio forflesh production varied from 3.92 to 8.91, the highest ratiobeing obtained in the offshore region. Total P/B ratios rangedfrom 10.14 to 16.01.  相似文献   

17.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

18.
The potential for leaf extension of plants of Lolium perennecv S24 growing in small artificial communities under naturalconditions was measured as the plants progressed from the vegetativeto the reproductive state In two consecutive years, 1975 and 1976, ‘simulated swards’were sown in autumn and overwintered in an open, unheated glasshouseIndividual swards from the batch sown in 1975 were brought into a growth room on two occasions in spring 1976 to measuretheir potential for leaf extension at a range of temperatures(5–20 °C) Individual swards from the batch sown inautumn 1976 were brought in to the growth room on 15 occasionsbetween November 1976 and May 1977 and their potential for leafextension was measured at a single temperature of 15 °CFrequent dissections were made in both years to describe changesin the developing apex. The potential for leaf extension at 15 °C decreased fromc 17 mm day–1 in November to c 10 mm day–1 in mid-winter.In January, the potential rapidly increased threefold to reach30mm day–1 by mid February The increase began coincidentwith the earliest stages of floral initiation and was completedby the time of double-ridge formation Spring-grown vegetativeplants, however, showed potential rates of < 20 mm day–1at 15 °C The results are discussed in relation to reproductive developmentand to changes in the carbohydrate strategy of the plants inearly spring Lolium perenne L perennial ryegrass, leaf extension, temperature response  相似文献   

19.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

20.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号