首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
Acylation of chitin with butyric acid was performed in the presence of trifluoroacetic anhydride/phosphoric acid mediated system. The products were characterized by 1H NMR and FT-IR spectroscopy and their solubility was tested in different organic solvents. Inclusion of butyric acid moieties into the parent molecule was confirmed from the 1H NMR and FT-IR spectra. FT-IR analysis revealed that the degree of acid substitution (DS) of the products was in a range of 1.9–2.38, which increased with increasing the amounts of butyric acid added to the reaction system. Degree of N-deacetylation (DD) of the products, as determined by 1H NMR was between 54.2% and 65.6%. The products with DS >2.0 were soluble in dimethyl sulfoxide, N,N-dimethylformamide, tetrahydrofuran, methanol, acetone, chloroform, and acetic acid.  相似文献   

2.
beta-chitin is known to form intercalation complexes with aliphatic alcohols and amines. We found that it also forms complexes with carboxylic anhydrides. When the beta-chitin-acetic anhydride complex was heated to 105 degrees C, the hydroxyl groups of chitin were acetylated by a host-guest reaction, maintaining the host's crystal structure. Structures of complex and acetylated products were analyzed by X-ray diffraction, (13)C CP/MAS NMR, and infrared spectroscopy. The maximum degree of substitution (DS) was close to 1.0, suggesting regioselective esterification at the C6 position of chitin. Partially acetylated beta-chitin with a DS of 0.4 could incorporate various guest species that are difficult to be incorporated by original beta-chitin. In contrast, beta-chitin acetate with a DS of 1 lost the ability to form a complex. Intercalation complexes of beta-chitin with cyclic anhydrides (succinic and maleic) also underwent esterification by heating, and the products with a DS of approximately 1 dissolved in aqueous alkali, apparently as the result of the dissociation of introduced carboxyl groups. These phenomena are potentially useful in controlling the complexation ability of beta-chitin and the preparation of regioselectively esterified chitin derivatives.  相似文献   

3.
Trifluoroacetic anhydride is an effective promoter for the preparation of chitin single- and mixed-acid esters. Complete dissolution is achieved within 30 min when powdered chitin is heated at 70 °C in a mixed solution of carboxylic acid(s) and trifluoroacetic anhydride. Chitin esters prepared are chitin acetate, chitin butyrate, chitin hexanoate and chitin octanoate, chitin co-acetate/butyrate, chitin co-acetate/hexanoate, chitin co-acetate/octanoate, chitin co-acetate/palmitate, each from a solution of the respective reactants. The products have degrees of O-acyl substitution in a range of DS 1-2 depending on the nature of acyl group, as analyzed by gas-liquid and high-pressure liquid chromatography. Acetic acid as a mutual component for the mixed-acid esters increases the total degree of substitution, and the acetyl substitution is close to the relative distribution in the reaction mixture for chitin co-acetate/butyrate. It is favored over hexanoate, octanoate, and palmitate. The parent molecules, as calculated by the composition of the chitin esters and their molecular weights by light-scattering spectroscopy, are 30 kDa for the smallest and 150-151 kDa for the largest. Films of these chitin derivatives when cast from solution are strong and flexible with limited extensibility. By dynamic mechanical analysis of the ester film, it was found that both the glass transition temperature (Tg) and the tensile modulus (E′ at 25 °C) are highest for chitin acetate (218 °C and 5.8 GPa), and lowest for chitin octanoate (182 °C and 1.5 GPa). For the other esters, these values lie between the above-cited values, where the Tg and the E′ decrease with an increase in the chain length of the acyl constituent.  相似文献   

4.
Insect chitin possessing shell-like structure was prepared from the bumblebee corpses by a consequent treatment with 1M HCl and 1M NaOH. The bumblebee chitin was compared with crustacean (shrimp) chitin by using elemental analysis, Fourier-transform infrared (FT-IR) and solid-state (13)C cross-polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy and confocal microscopy. Both chitins (bumblebee and shrimp) exhibited identical spectra, while the bumblebee chitin had a 5% lower degree of acetylation and was characterized by a fine membrane texture.  相似文献   

5.
Water-soluble and white quaternized chitin (QC) was homogeneously synthesized by stirring transparent chitin solution (2%) in 8 wt%NaOH/4 wt% urea aqueous solution containing 2,3-Epoxypropyltrimethylammonium Chloride (EPTMAC) at 10 °C for 24 h. The structure and properties of quaternized chitin were characterized by FT-IR, XRD, 1H NMR, GPC, element analysis and ζ-potential. The results indicate that quaternary groups were successfully incorporated onto chitin backbones and the degree of substitution (DS) of quaternary groups can be easily adjusted by changing the molar ratio of chitin unit to EPTMAC. Additionally, quaternized chitin shows better antibacterial activity against Escherichia coli and Staphylococcus aureus as compared with chitosan. Thus, this work provides a simply and “green” method to functionalize chitin and the resulting quaternized chitin may have potential applications in environmental, food and biomedical fields.  相似文献   

6.
Structure and function of enzymes acting on chitin and chitosan   总被引:1,自引:0,他引:1  
Enzymatic conversions of chitin and its soluble, partially deacetylated derivative chitosan are of great interest. Firstly, chitin metabolism is an important process in fungi, insects and crustaceans. Secondly, such enzymatic conversions may be used to transform an abundant biomass to useful products such as bioactive chito-oligosaccharides. Enzymes acting on chitin and chitosan are abundant in nature. Here we review current knowledge on the structure and function of enzymes involved in the conversion of these polymeric substrates: chitinases (glycoside hydrolase families 18 & 19), chitosanases (glycoside hydrolase families 8, 46, 75 & 80) and chitin deacetylases (carbohydrate esterase family 4).  相似文献   

7.
A simple chemical modification route to confer high hydrophobicity to crystalline cellulose surface was demonstrated using tunicin whiskers as model material. An alkyenyl succinic anhydride (ASA) aqueous emulsion was mixed with cellulose suspension, freeze-dried, and heated to 105 degrees C. The bulk degree of substitution (DS) was evaluated by FT-IR spectrometry, elemental analysis, and weight gain. The surface DS was quantified by X-ray photoelectron spectroscopy. The surface-acylated whiskers retained their morphological and crystalline integrity, but due to their surface acylation, they are readily dispersible in solvents of low polarity such as 1,4-dioxane. These whiskers can also be well dispersed in polystyrene to form a nanocomposite.  相似文献   

8.
The object of this study was to test the solubility of a methoxy poly(ethylene glycol) (MPEG)-grafted chitosan copolymer in organic solvents and aqueous solution. Water-soluble chitosan with low molecular weight (LMWSC) was used in a PEG-graft copolymerization. The MPEG was conjugated to chitosan using 4-dicyclohexylcarbodimide (DCC), and N-hydroxysuccimide (NHS). Introduction of PEG was confirmed by (1)H and (13)C NMR spectroscopy and FT-IR spectroscopy. The degree of substitution (DS) of MPEG into chitosan was calculated from (1)H NMR data and also by estimating the molecular weight (MW) using gel permeation chromatography (GPC). The DS values obtained from (1)H NMR spectroscopy and GPC were similar, indicating that MPEG-grafted LMWSC was synthesized and properly characterized. Furthermore, the introduction of PEG into chitosan increases the solubility in aqueous solutions over a range of pH values (4.0-11.0) and organic solvents such as DMF, DMSO, ethanol, and acetone.  相似文献   

9.
13C CP/MAS NMR spectroscopy has been shown to be a powerful tool to quantify the degree of acetylation of chitin and chitosan. In order to optimise the parameters which afford quantitative 13C cross-polarisation magic-angle spinning NMR spectra, a detailed relaxation study has been carried out on selected chitin and deacetylated chitin samples. A relaxation delay of 5 s and a contact time of 1 ms have been found to yield quantitative NMR spectra of samples with deacetylation degree values of 0.68 and 0.16. The measured spin-lattice relaxation times in the rotating frame, T1ρH, are in the range 6.4–8.9 ms for chitin and 4.3–7.3 ms for deacetylated chitin, while TCH values for both samples are very similar and range from 0.03 to 0.19 ms. Spin-counting experiments indicate that, within experimental error, all carbon is detected by NMR indicating that the samples studied contain no (or very few) paramagnetic centres.  相似文献   

10.
A polysaccharide YCP was prepared from a marine filamentous fungus Keissleriella sp. YS4108, which exhibited as a molecular weight (Mw) of 2.4x10(3) kDa and its three sulfated derivatives (YCP-SL, YCP-SM and YCP-SH) were synthesized, the degree of substitution (DS) of which were determined to be 0.13, 0.99 and 1.3, with the average molecular weight 0.64x10(3), 0.57x10(3) and 0.45x10(3) kDa, respectively. Anticoagulant activity and antiplatelet aggregation activity of these sulfated derivates were evaluated by activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and platelet aggregation assay. The results showed that YCP sulfates significantly prolonged APTT, TT and PT. The derivates showed no effects on thrombin in the presence or in the absence of antithrombin III (AT III) or heparin cofactor II (HC II), while the derivates effectively inhibited factor Xa in the presence of AT III. At the same time, YCP-SH also possessed potent antiplatelet aggregation activity in vitro compared with aspirin. YCP sulfates specifically interfered with different stages of the coagulation cascade, and the anticoagulant activity improved with the increasing DS and decreased Mw.  相似文献   

11.
Starch acetates and starch butyrates with degree of substitution (DS) in the range of 0.06–1.54 were prepared by a simple direct solvent-free organocatalytic methodology of starch acylation. The starch esters synthesized have important applications in the food and pharmaceutical industries, among others. The acylation methodology used involves a non-toxic biobased α-hydroxycarboxylic acid as catalyst, and proceeds with high efficiency in absence of solvents. The effect of reaction time on the advance of starch modification was studied as a simple way to control the level of substitution achieved, when all other reaction parameters were kept constant. Starch esters were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectroscopy qualitatively confirmed the esterification of starch by the appearance of bands which are associated with esters groups. Scanning electron microscopy showed that the granular structure of the polysaccharide was preserved upon acylation, although acylated granules had rougher surfaces; and wrinkles, grooves and deformed zones appeared in some granules at high DS. Thermogravimetric analysis showed a gradual reduction in the water content of acylated starches, as well as noticeable changes in their thermal properties at increasing DS. X-ray diffraction analysis showed that the acetylation treatment led to lower crystallinity at increasing DS, although characteristic corn starch A-type patterns could be identified even at the highest DS achieved (DS = 1.23). Specific bands and weight losses derived from FTIR and TGA data could be very well correlated with the substitution degree achieved in acetylated starches at DS lower/equal than 0.6. The organocatalytic methodology described for the synthesis of starch acetates and butyrates has the potential to be easily extended to the synthesis of other starch esters using a variety of anhydrides or carboxylic acids as acylating agents  相似文献   

12.
The mode of action of chitin deacetylase from the fungus Mucor rouxii on N-acetylchitooligosaccharides with a degree of polymerization 1-7 has been elucidated. Identification of the sequence of chitin oligomers following enzymatic deacetylation was verified by the alternative use of two specific exo-glycosidases in conjunction with HPLC. The results were further verified by 1H-NMR spectroscopy. It was observed that the length of the oligomer is important for enzyme action. The enzyme cannot effectively deacetylate chitin oligomers with a degree of polymerization lower than three. Tetra-N-acetylchitotetraose and penta-N-acetylchitopentaose are fully deacetylated by the enzyme, while in the case of tri-N-acetylchitotriose, hexa-N-acetylchitohexaose and hepta-N-acetylchitoheptaose the reducing-end residue always remains intact. Furthermore, the enzyme initially removes an acetyl group from the nonreducing-end residue of all chitin oligomers with a degree of polymerization higher than 2, and further catalyses the hydrolysis of the following acetamido groups in a processive fashion. The results are in agreement with the mode of action that the same enzyme exhibits on partially deacetylated water soluble chitosan polymers.  相似文献   

13.
FT-IR spectrometry and X-ray diffraction were applied to probe the differences between pulp fibers from Eucalyptus wood (hardwood) and Norway spruce wood (softwood). Wood processing was found to induce certain structural alterations within its components depending on the type of wood and the applied procedure. These differences were established by using techniques such as; spectral comparison of wood samples with those of individual component fractions, derivative spectroscopy, bands deconvolution, etc. FT-IR spectroscopy was shown to be an important tool that provided details about the structural characteristics of hardwood and softwood samples. Using second-derivative spectra and deconvolution processes small differences between spectra became apparent that allowed correlations to be made related to wood composition. In addition a correlation was established between the integral absorptions for the various bands and lignin content as well as the lignin/carbohydrate content. Relations between various spectral characteristics and the degree of crystallinity and sample composition were established.  相似文献   

14.
Sulfation of Chinese lacquer polysaccharides in different solvents   总被引:5,自引:0,他引:5  
A branched ionic polysaccharide isolated from the sap of the Chinese lac tree (Rhus vernicifera) was chemically modified by sulfation using sulfur trioxide–pyridine (SO3·Py) complex as a reagent. Effects of molar ratio of SO3·Py complex to sugar unit, reaction time and reaction temperature on degree of sulfation (DS) and molecular weights of products were studied. Solvent was another important factor affecting sulfation reaction. In different solvents, when the other conditions remained constant, DS and molecular weights were in the following order: DMSO>DMF>FA (formamide) and DMSO3·Py complex. Based on these, we deduced that degradation of polysaccharide in the sulfation reaction process involved both dehydrolysis and hydrolytic degradation.  相似文献   

15.
A series of acylated chitin derivatives was prepared by reacting chitin in a solution of trifluoroacetic anhydride and each of the cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl carboxylic acids. The degree of O-acyl substitution was in a range of 1.1-1.4 depending upon the nature of the cyclic acid added, as determined by FT-IR analysis. The solubility of the products in the organic solvents of DMF and THF increased with an increase in the cyclic chain length of the carboxylic acid. Thermal gravimetric analysis indicated that the products were stable up to 220 °C for chitin cyclopropanoate and cyclobutanoate, and 250 °C for chitin cyclopentanoate and cyclohexanoate. The surface morphology of the products by scanning electron microscopic analysis revealed porous and globular surface for chitin cyclobutanoate, cyclopentanoate, and cyclohexanoate, contrast to the dense and smooth organization for the cyclopropanoate.  相似文献   

16.
Wheat straw hemicelluloses were acetylated with acetic anhydride using iodine as a novel catalyst in 1-butyl-3-methylimidzolium chloride ([C4mim]Cl) ionic liquid (IL). Acetylated hemicelluloses with yield and degree of substitution (DS) from 70.5% to 90.8% and between 0.49 and 1.53, respectively, are accessible in a complete homogeneous procedure by changing the reaction temperature, reaction duration, the dosage of catalyst, and the dosage of acetic anhydride. The preferred reaction parameters that resulted in the highest DS were follows: 20:1 reactant molar ratio, 100 °C, 30 min, 15% iodine, in which about 83% hydroxyl groups in native hemicelluloses were esterified. The structural features of the acetylated hemicelluloses were characterized by 13C NMR and FT-IR spectroscopy. The thermal stability of the acetylated hemicelluloses increased upon chemical modification. It is the first time that we have demonstrated that ILs could be used as an environmentally friendly solvent for the chemical modification of hemicelluloses.  相似文献   

17.
Acylated chitosan was synthesized by reaction of chitosan and stearoyl chloride. The chemical structures and physical properties of the prepared compounds were confirmed by Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD) and Thermogravimetric (TG) techniques. The degree of substitution (DS) was calculated by 1H NMR and ranged from 1.8 to 3.8. The synthesized compounds exhibited an excellent solubility in organic solvents. XRD analysis showed that they had high crystalline structure. TG results demonstrated that thermal stability of the prepared compounds was lower than that of chitosan, the weight loss decreased with increase of DS. This procedure could be a facile method to prepare organic-soluble chitosan derivatives.  相似文献   

18.
19.
The skeletons of demosponges, such as Ianthella basta, are known to be a composite material containing organic constituents. Here, we show that a filigree chitin-based scaffold is an integral component of the I. basta skeleton. These chitin-based scaffolds can be isolated from the sponge skeletons using an isolation and purification technique based on treatment with alkaline solutions. Solid-state 13C NMR, Raman, and FT-IR spectroscopies, as well as chitinase digestion, reveal that the isolated material indeed consists of chitin. The morphology of the scaffolds has been determined by light and electron microscopy. It consists of cross-linked chitin fibers approximately 40–100 nm in diameter forming a micro-structured network. The overall shape of this network closely resembles the shape of the integer sponge skeleton. Solid-state 13C NMR spectroscopy was used to characterize the sponge skeleton on a molecular level. The 13C NMR signals of the chitin-based scaffolds are relatively broad, indicating a high amount of disordered chitin, possibly in the form of surface-exposed molecules. X-ray diffraction confirms that the scaffolds isolated from I. basta consist of partially disordered and loosely packed chitin with large surfaces. The spectroscopic signature of these chitin-based scaffolds is closer to that of α-chitin than β-chitin.  相似文献   

20.
The exoskeleton of an insect can contain countless specializations across an individual, across developmental stages, and across the class Insecta. Hence, the exoskeleton's building material cuticle must perform a vast variety of functions. Cuticle displays a wide range of material properties which are determined by several known factors: the amount and orientation of the chitin fibres, the constituents and degree of cross-linking and hydration of the protein matrix, the relative amounts of exo- and endocuticle, and the shape of the structures themselves. In comparison to other natural materials such as wood and mammal bone, relatively few investigations into the mechanical properties of insect cuticle have been carried out. Of these, very few have focussed on the need for repair and its effectiveness at restoring mechanical stability to the cuticle. Insect body parts are often subject to prolonged repeated cyclic loads when running and flying, as well as more extreme “emergency” behaviours necessary for survival such as jumping, wedging (squeezing through small holes) and righting (when overturned). What effects have these actions on the cuticle itself? How close to the limits of failure does an insect push its body parts? Can an insect recover from minor or major damage to its exoskeleton “bones”? No current research has answered these questions conclusively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号