首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilization is a calcium-dependent process that involves sequential cell–cell adhesion events of spermatozoa with oviduct epithelial cells (OECs) and with cumulus-oocyte complexes (COCs). Epithelial cadherin (E-cadherin) participates in calcium-dependent somatic cell adhesion; the adaptor protein β-catenin binds to the E-cadherin cytoplasmic domain and links the adhesion protein to the cytoskeleton. The study was conducted to immunodetect E-cadherin and β-catenin in bovine gametes and oviduct (tissue sections and OEC monolayers), and to assess E-cadherin participation in fertilization-related events. Epithelial cadherin was found in spermatozoa, oocytes, cumulus cells, and OEC. In acrosome-intact noncapacitated spermatozoa, E-cadherin was mainly localized in the apical ridge and acrosomal cap (E1-pattern; 84 ± 9%; mean ± standard deviation of the mean). After sperm treatment with heparin to promote capacitation, the percentage of cells with E1-pattern (56 ± 12%) significantly decreased; concomitantly, the percentage of spermatozoa depicting an E-cadherin staining pattern similar to E1-pattern but showing a signal loss in the acrosomal cap (E2-pattern: 40 ± 11%) increased. After l-α-lysophosphatidylcholine–induced acrosome reaction, E-cadherin signal was mainly localized in the inner acrosomal membrane (E3-pattern: 67 ± 22%). In IVM COC, E-cadherin was immunodetected in the plasma membrane of cumulus cells and oocytes, but was absent in the polar body. The 120 KDa mature protein form was found in protein extracts from spermatozoa, oocytes, cumulus cells, and OEC. β-Catenin distribution followed E-cadherin's in all cells evaluated. Epithelial cadherin participation in cell–cell interaction was evaluated using specific blocking monoclonal antibody DECMA-1. Sperm incubation with DECMA-1 impaired sperm–OEC binding (the number of sperm bound to OEC: DECMA-1 = 6.7 ± 6.1 vs. control = 29.6 ± 20.1; P < 0.001), fertilization with COC (% fertilized COC: DECMA-1 = 68.8 ± 10.4 vs. control = 90.7 ± 3.1; P < 0.05) or denuded oocytes (% fertilized oocytes: DECMA-1 = 57.0 ± 15.2 vs. control = 89.2 ± 9.8; P < 0.05) and binding to the oolemma (the number of sperm bound to oolemma: DECMA-1 = 2.2 ± 1.1 vs. control = 11.1 ± 4.8; P < 0.05). This study describes, for the first time, the presence of E-cadherin in bovine spermatozoa, COC, and OEC, and shows evidence of its participation in sperm interaction with the oviduct and the oocyte during fertilization.  相似文献   

2.
The cadherins and their cytoplasmic counterparts, the catenins, form the adherens junctions, which are of importance for tissue integrity and barrier functions. The development and maturation of the ovarian follicle is characterized by structural changes, which require altered expression or function of the components involved in cell-cell contacts. The present study examined the cell-specific localization and temporal expression of epithelial cadherin (E-cadherin) and alpha- and beta-catenin during follicular development, ovulation and corpus luteum formation in the immature gonadotrophin- and oestrogen-stimulated rat ovary. Immunohistochemistry and immunoblotting demonstrated the expression of E-cadherin in theca and interstitial cells of immature ovaries before and after injection of equine chorionic gonadotrophin (eCG). E-cadherin was not detected in granulosa cells, except in the preantral follicles located to the inner region of the ovary. The content of E-cadherin in theca and interstitial cells decreased after an ovulatory dose of hCG. Granulosa cells of apoptotic follicles did not express E-cadherin. Oestrogen treatment (diethylstilboestrol) of immature rats for up to 3 days did not result in a measurable expression of E-cadherin in granulosa cells. alpha- and beta-catenin were expressed in all ovarian compartments. The concentration of beta-catenin was constant during the follicular phase, whereas the content of alpha-catenin decreased in granulosa cells after treatment with diethylstilboestrol or hCG. The expression of alpha-catenin was also reduced in theca and interstitial cells after hCG. alpha- and beta-catenin were present in most ovarian cells at all stages of folliculogenesis. Therefore, the catenins have the potential to associate with different members of the cadherin family and to participate in the regulation of cytoskeletal structures and intracellular signalling. The restricted expression of E-cadherin in granulosa cells of preantral follicles indicates a role in the recruitment of these follicles to subsequent cycles. The specific decrease of alpha-catenin in granulosa cells and the reduction of both alpha-catenin and E-cadherin in theca cells of ovulatory follicles might reflect some of the molecular changes in cell-cell adhesion associated with ovulation and luteinization.  相似文献   

3.
Classical and atypical cadherins mediate calcium-dependent cell adhesion and play an important role in morphogenetic processes. We have shown, previously, N- and E-cadherin expression in the rat ovary. This expression, however, was not associated with specific follicle-restructuring events such as antrum formation and segregation of mural from cumulus granulosa cells suggesting that other cadherins may serve this function. In this study, RT-PCR and immunostaining techniques showed that three other cadherins are expressed throughout prepubertal ovarian development in the rat: one classical (P-) cadherin, and two atypical (K- and OB-) cadherins. RT-PCR analysis of isolated ovarian tissue compartments (granulosa cells and the residual ovarian tissue) agreed with the immunostaining results. Immunostaining showed P- and K-cadherin expression by granulosa, as well as thecal/interstitial cells, and also in oocytes of primordial follicles. P-cadherin expression was absent in oocytes of follicles in later stages of development compared to K-cadherin, which was found in oocytes at all stages of folliculogenesis. P-, K-, and OB-cadherin were expressed by the ovarian surface epithelial cells of neonatal animals but only P- and OB-cadherin expression were maintained in these cells in 25 day-old animals. Cellular OB-cadherin staining was absent in follicles at all stages of development and its expression was restricted to the ovarian hilar region and portions of the stroma. In summary, cadherin expression and distribution profiles changed during ovarian growth and folliculogenesis suggesting a role for cadherins in organizational and morphogenetic processes within the developing rat ovary.  相似文献   

4.
Cadherins are a family of transmembrane glycoproteins which play a key role in Ca(2+)-dependent cell-cell adhesion. Cytoplasmic domains of these molecules are anchored to the cell cytoskeleton and are required for cadherin function. To elucidate how the function of cadherins is controlled through their cytoplasmic domains, we deleted five different regions in the cytoplasmic domain of E-cadherin. After transfecting L cells with cDNA encoding the mutant polypeptides, we assayed aggregating activity of these transfectants; all these mutant proteins were shown to have an extracellular domain with normal Ca(2+)-sensitivity and molecular weight. Two mutant polypeptides with deletions in the carboxy half of the cytoplasmic domain, however, did not promote cell-cell adhesion and had also lost the ability to bind to the cytoskeleton, whereas the mutant molecules with deletions of other regions retained the ability to promote cell adhesion and to anchor to the cytoskeleton. Thus, the cytoplasmic domain contains a subdomain which was involved in the cell adhesion and cytoskeleton-binding functions. When E-cadherin in F9 cells or in L cells transfected with wild-type or functional mutant cadherin polypeptides was solubilized with nonionic detergents and immunoprecipitated, two additional 94 and 102 kDa components were coprecipitated. The 94 kDa component, however, was not detected in the immunoprecipitates from cells expressing the mutant cadherins which had lost the adhesive function. These results suggest that the interaction of the carboxy half of the cytoplasmic domain with the 94 kDa component regulates the cell binding function of the extracellular domain of E-cadherin.  相似文献   

5.
Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain.   总被引:49,自引:0,他引:49  
C Kintner 《Cell》1992,69(2):225-236
Differential adhesion between embryonic cells has been proposed to be mediated by a family of closely related glycoproteins called the cadherins. The cadherins mediate adhesion in part through an interaction between the cadherin cytoplasmic domain and intracellular proteins, called the catenins. To determine whether these interactions could regulate cadherin function in embryos, a form of N-cadherin was generated that lacks an extracellular domain. Expression of this mutant in Xenopus embryos causes a dramatic inhibition of cell adhesion. Analysis of the mutant phenotype shows that at least two regions of the N-cadherin cytoplasmic domain can inhibit adhesion and that the mutant cadherin can inhibit catenin binding to E-cadherin. These results suggest that cadherin-mediated adhesion can be regulated by cytoplasmic interactions and that this regulation may contribute to morphogenesis when emerging tissues coexpress several cadherin types.  相似文献   

6.
Paracrine regulations between the oocyte and granulosa cells are likely to be key regulators of early folliculogenesis. Evidence obtained from genetic mutants as well as in vivo experiments suggest that Kit and Kit Ligand (KL) may regulate early follicular morphogenesis and function. In this study, we used in vitro culture of intact mouse follicles to confirm and extend these findings. Two concentrations of Kit Ligand (20 and 50 ng/ml) or an antibody blocking the Kit-Kit Ligand interactions (SC1494) were added to preantral follicles grown individually for 12 days and which were finally triggered to ovulate. Effects on follicle and oocyte survival, granulosa cell function (antrum formation, cell numbers, steroidogenesis), and oocyte function (growth, survival, nuclear and/or cytoplasmic maturation) were then analyzed. In optimal culture conditions (presence of 5% fetal calf serum), 50 ng/ml of KL significantly improved cytoplasmic maturation of the oocyte and increased follicular testosterone output, but other parameters were not altered. In serum-free culture conditions, KL was mitogenic for granulosa cells at 50 ng/ml, but could not induce antrum formation and no differences were observed between control and treated groups for steroidogenesis or oocyte growth. Blockade of Kit-Kit Ligand interactions by addition of a blocking antibody decreased oocyte survival 6-9 days after addition of the antibody, but did not upset granulosa cell proliferation. Antrum formation was, however, strongly inhibited. In addition, the blocking antibody markedly reduced aromatase activity of granulosa cells. We conclude that Kit/KL interactions are important for antrum formation and follicular steroidogenesis and regulate survival and cytoplasmic maturation of the oocyte.  相似文献   

7.
8.
《The Journal of cell biology》1994,125(6):1327-1340
Calcium-dependent cell-cell adhesion is mediated by the cadherin family of cell adhesion proteins. Transduction of cadherin adhesion into cellular reorganization is regulated by cytosolic proteins, termed alpha-, beta-, and gamma-catenin (plakoglobin), that bind to the cytoplasmic domain of cadherins and link them to the cytoskeleton. Previous studies of cadherin/catenin complex assembly and organization relied on the coimmunoprecipitation of the complex with cadherin antibodies, and were limited to the analysis of the Triton X-100 (TX- 100)-soluble fraction of these proteins. These studies concluded that only one complex exists which contains cadherin and all of the catenins. We raised antibodies specific for each catenin to analyze each protein independent of its association with E-cadherin. Extracts of Madin-Darby canine kidney epithelial cells were sequentially immunoprecipitated and immunoblotted with each antibody, and the results showed that there were complexes of E-cadherin/alpha-catenin, and either beta-catenin or plakoglobin in the TX-100-soluble fraction. We analyzed the assembly of cadherin/catenin complexes in the TX-100- soluble fraction by [35S]methionine pulse-chase labeling, followed by sucrose density gradient fractionation of proteins. Immediately after synthesis, E-cadherin, beta-catenin, and plakoglobin cosedimented as complexes. alpha-Catenin was not associated with these complexes after synthesis, but a subpopulation of alpha-catenin joined the complex at a time coincident with the arrival of E-cadherin at the plasma membrane. The arrival of E-cadherin at the plasma membrane coincided with an increase in its insolubility in TX-100, but extraction of this insoluble pool with 1% SDS disrupted the cadherin/catenin complex. Therefore, to examine protein complex assembly in both the TX-100- soluble and -insoluble fractions, we used [35S]methionine labeling followed by chemical cross-linking before cell extraction. Analysis of cross-linked complexes from cells labeled to steady state indicates that, in addition to cadherin/catenin complexes, there were cadherin- independent pools of catenins present in both the TX-100-soluble and - insoluble fractions. Metabolic labeling followed by chase showed that immediately after synthesis, cadherin/beta-catenin, and cadherin/plakoglobin complexes were present in the TX-100-soluble fraction. Approximately 50% of complexes were titrated into the TX-100- insoluble fraction coincident with the arrival of the complexes at the plasma membrane and the assembly of alpha-catenin. Subsequently, > 90% of labeled cadherin, but no additional labeled catenin complexes, entered the TX-100-insoluble fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The carboxyl terminus-truncated cadherin (nonfunctional cadherin) has no cell adhesion activity probably because of its failure to associate with cytoplasmic proteins called alpha and beta catenin. To rescue this nonfunctional cadherin as adhesion molecules, we constructed three cDNAs for fusion proteins between nonfunctional E-cadherin and alpha catenin, nE alpha, nE alpha N, and nE alpha C, where the intact, amino- terminal and carboxy-terminal half of alpha catenin, respectively, were directly linked to the nonfunctional E-cadherin, and introduced them into mouse L cells. The subcellular distribution and cell adhesion activity of nE alpha and nE alpha C molecules was similar to those of intact E-cadherin transfectants: they bound to cytoskeletons, were concentrated at cell-cell adhesion sites and showed strong cell adhesion activity. nE alpha N molecules, which also bound to cytoskeletons, showed very poor cell adhesion activity. Taken together, we conclude that in the formation of the cadherin-catenin complex, the mechanical association of alpha catenin, especially its carboxy- terminal half, with E-cadherin is a key step for the cadherin-mediated cell adhesion. Close comparison revealed that the behavior of nE alpha molecules during cytokinesis was quite different from that of intact E- cadherin, and that the intercellular motility, i.e., the cell movement in a confluent sheet, was significantly suppressed in nE alpha transfectants although it was facilitated in E-cadherin transfectants. Considering that nE alpha was not associated with endogenous beta catenin in transfectants, the difference in the nature of cell adhesion between nE alpha and intact E-cadherin transfectants may be explained by the function of beta catenin. The possible functions of beta catenin are discussed with a special reference to its role as a negative regulator for the cadherin-mediated cell adhesion system.  相似文献   

10.
The aim of the study was to determine the expression of proliferating cell nuclear antigen protein (PCNA) in the pig ovary. The localization of PCNA was demonstrated in paraffin sections of pig ovarian tissue using primary mouse monoclonal anti-PCNA antibody. In primordial follicles, no remarkable staining for PCNA either in granulosa cells or in the oocytes was observed. In primary to secondary follicles, positive staining in oocytes and in some granulosa cells was detected. The advanced preantral and particularly actively growing small to large antral follicles showed extensive PCNA labeling in the layers of granulosa and theca cells and in the cumulus cells encircling the oocyte. PCNA labeling was expressed in nuclei of oocytes in preantral and small antral follicles. In atretic follicles, the level of PCNA protein expression was dependent on the stage of atresia. Follicles demonstrating advanced atresia showed only limited or no PCNA labeled granulosa and theca cells. The results of the study demonstrate that follicular growth and development in pig ovary may be effectively monitored by determining the granulosa cell expression of PCNA.  相似文献   

11.
《The Journal of cell biology》1996,135(6):1643-1654
E-cadherin is a transmembrane glycoprotein that mediates calcium- dependent, homotypic cell-cell adhesion and plays an important role in maintaining the normal phenotype of epithelial cells. Disruption of E- cadherin activity in epithelial cells correlates with formation of metastatic tumors. Decreased adhesive function may be implemented in a number of ways including: (a) decreased expression of E-cadherin; (b) mutations in the gene encoding E-cadherin; or (c) mutations in the genes that encode the catenins, proteins that link the cadherins to the cytoskeleton and are essential for cadherin mediated cell-cell adhesion. In this study, we explored the possibility that inappropriate expression of a nonepithelial cadherin by an epithelial cell might also result in disruption of cell-cell adhesion. We showed that a squamous cell carcinoma-derived cell line expressed N-cadherin and displayed a scattered fibroblastic phenotype along with decreased expression of E- and P-cadherin. Transfection of this cell line with antisense N- cadherin resulted in reversion to a normal-appearing squamous epithelial cell with increased E- and P-cadherin expression. In addition, transfection of a normal-appearing squamous epithelial cell line with N-cadherin resulted in downregulation of both E- and P- cadherin and a scattered fibroblastic phenotype. In all cases, the levels of expression of N-cadherin and E-cadherin were inversely related to one another. In addition, we showed that some squamous cell carcinomas expressed N-cadherin in situ and those tumors expressing N- cadherin were invasive. These studies led us to propose a novel mechanism for tumorigenesis in squamous epithelial cells; i.e., inadvertent expression of a nonepithelial cadherin.  相似文献   

12.
Differentiation and proliferation of hematopoietic progenitors take place in the bone marrow and is a tightly controlled process. Cell adhesion molecules of the integrin and immunoglobulin families have been shown to be involved in these processes, but almost nothing was known about the involvement of the cadherin family in the hematopoietic system. A PCR screening of RNA of human bone marrow mononuclear cells with specific primers for classical cadherins revealed that E-cadherin, which is mainly expressed by cells of epithelial origin, is also expressed by bone marrow cells. Western blot analysis and immunofluorescence staining of bone marrow sections confirmed this unexpected finding. A more detailed analysis using immunoaffinity columns and dual color flow cytometry showed that the expression of E- cadherin is restricted to defined maturation stages of the erythropoietic lineage. Erythroblasts and normoblasts express E- cadherin, mature erythrocytes do not. A functional role of E-cadherin in the differentiation process of the erythroid lineage was indicated by antibody-inhibition studies. The addition of anti-E-cadherin antibody to bone marrow mononuclear cultures containing exogeneous erythropoietin drastically diminished the formation of erythropoietic cells. These data suggest a non-anticipated expression and function of E-cadherin in one defined hematopoietic cell lineage.  相似文献   

13.
Identification of a putative cell adhesion domain of uvomorulin.   总被引:41,自引:4,他引:37       下载免费PDF全文
D Vestweber  R Kemler 《The EMBO journal》1985,4(13A):3393-3398
A rat monoclonal antibody (DECMA-1) selected against the murine cell adhesion molecule uvomorulin blocks both the aggregation of mouse embryonal carcinoma cells and the compaction of pre-implantation embryos. However, decompacted embryos eventually become recompacted in the presence of DECMA-1 and form blastocysts composed of both trophectoderm and inner cell mass. DECMA-1 also disrupts confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells. DECMA-1 recognizes uvomorulin in extracts from mouse and dog tissues. Protease digestion of mouse and dog uvomorulin generated core fragments including one of 26 kd which reacted with DECMA-1. The same 26-kd fragment is recognized by anti-uvomorulin monoclonal antibodies which have been obtained from other laboratories and which dissociate MDCK cell monolayers and block the formation of the epithelial occluding barrier. This 26-kd fragment therefore seems to be involved in the adhesive function of uvomorulin.  相似文献   

14.
15.
E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.  相似文献   

16.
Isobe N  Yoshimura Y 《Theriogenology》2000,54(7):1159-1169
We examined the frequency of proliferating cells in cystic, atretic and healthy antral follicles to determine whether a disorder of cell proliferation was responsible for the occurrence of bovine cystic follicles. Paraffin sections of healthy follicles and various stages of atretic and cystic follicles were immunostained with mouse monoclonal antibody to proliferating cell nuclear antigen (PCNA). The PCNA-positive cells were counted in 4 different regions of a follicle from the apical to the basal side. In the granulosa layer, a significantly higher frequency of PCNA-positive cells was observed in the healthy follicle in the basal region as compared with the apical region. A similar pattern of PCNA-positive cells population was observed in the granulosa layer of atretic follicles, although the frequency in the basal region was significantly lower in the atretic than the healthy follicle. The rate of cell proliferation in the granulosa layer of cystic follicles was markedly lower at the basal region than that of atretic follicles. In the theca interna, the frequency of PCNA-positive cells in atretic follicles at the early stages was higher than that in cystic follicles at the early stages. These results suggest that in the healthy follicle the proliferative activity of granulosa cells is higher in the basal than the apical region, and that the cell proliferation activity in the granulosa and theca interna may decrease in association with the induction of a follicular cyst.  相似文献   

17.
Granulosa cells at different stages of differentiation were collected from ovarian follicles and oviducts during the periovulatory period, and their nuclear DNA content was monitored by flow cytometry to establish their cell cycle characteristics (G0 + G1, S, G2 + M). The proportion of cells in the three phases of the cell cycle varied in characteristics patterns depending upon the time they were collected, before or following ovulation. Granulosa (cumulus) cells recovered from ovulated oocytes were mitotically inactive as shown by the large proportion of cells with a 2C amount of DNA and the absence of cells in S phase. The proportion of granulosa cells in G2 + M decreased when recovery from the oviducts was delayed. In contrast, granulosa (cumulus and/or mural) cells recovered from preovulatory follicles prior to luteinizing hormone (LH) exposure contained a considerable population of cells undergoing DNA synthesis, and a decreased proportion of cells with a 2C DNA content. Our findings indicate that granulosa cells undergo dynamic and characteristics changes in all cell cycle phases during the periovulatory period, within follicular and oviductal environments. Intrafollicular events appear to play a major role in controlling DNA synthesis, proliferation, and related cell cycle events in the granulosa cells. Flow cytometric techniques provide objective and detailed information on the cell cycle characteristics of granulosa cell populations at different stages of differentiation. Elucidation of the mechanisms regulating cell cycle parameters of granulosa cells and their physiological significance thus seems feasible.  相似文献   

18.
W Zhu  B Leber  D W Andrews 《The EMBO journal》2001,20(21):5999-6007
Cellular adhesion is regulated by members of the cadherin family of adhesion receptors and their cytoplasmic adaptor proteins, the catenins. Adhesion complexes are regulated by recycling from the plasma membrane and proteolysis during apoptosis. We report that in MCF-7, MDA-MB-468 and MDCK cells, induction of apoptosis by agents that cause endoplasmic reticulum (ER) stress results in O-glycosylation of both beta-catenin and the E-cadherin cytoplasmic domain. O-glycosylation of newly synthesized E-cadherin blocks cell surface transport, resulting in reduced intercellular adhesion. O-glycosylated E-cadherin still binds to beta- and gamma-catenin, but not to p120-catenin. Although O-glycosylation can be inhibited with caspase inhibitors, cleavage of caspases associated with the ER or Golgi complex does not correlate with E-cadherin O-glycosylation. However, agents that induce apoptosis via mitochondria do not lead to E-cadherin O-glycosylation, and decrease adhesion more slowly. In MCF-7 cells, this is due to degradation of E-cadherin concomitant with cleavage of caspase-7 and its substrate poly(ADP-ribose) polymerase. We conclude that cytoplasmic O-glycosylation is a novel, rapid mechanism for regulating cell surface transport exploited to down-regulate adhesion in some but not all apoptosis pathways.  相似文献   

19.
The function of cadherin cell adhesion molecules is thought to be regulated by a group of cytoplasmic proteins, including alpha-catenin. We identified a subtype of alpha-catenin, termed alpha N-catenin, which is associated with N-cadherin and expressed mainly in the nervous system. cDNA transfection experiments showed that alpha N-catenin can also bind with E-cadherin. To investigate the role of alpha N-catenin, we transfected lung carcinoma PC9 cells, which express E-cadherin and beta-catenin but neither alpha- nor alpha N-catenin, with alpha N-catenin cDNA. While parental PC9 grew as isolated cells, the transfectant lines formed aggregates in which cells were tightly adhered to each other, showing epithelial arrangements, and they occasionally gave rise to cystic spheres. These results suggest that alpha N-catenin is crucial not only for cadherin function but also for organization of multicellular structures.  相似文献   

20.
Although cyclin D2 mRNA synthesis precedes gonadotropin-induced DNA synthesis in quiescent granulosa cells in culture, it is unclear whether a similar mechanism exists for the granulosa cells of growing preantral follicles in cyclic animals. The objective was to evaluate whether the synthesis of cyclin D2 protein was a prerequisite for FSH-induced DNA synthesis in the granulosa cells of intact preantral follicles of cyclic hamsters. Preantral follicles from cyclic hamsters were cultured in the presence or absence of FSH, and cell cycle parameters were examined. FSH stimulated cyclin-dependent kinase (CDK)-4 activity by 2 h and DNA synthesis by 4 h without altering the levels of cyclin D2 in the granulosa cells. The FSH effect was mimicked by epidermal growth factor administered in vivo. Although FSH increased the levels of cyclin D2 mRNA, it also stimulated the degradation of cyclin D2 as well as p27(Kip1) and p19(INK4) proteins. FSH activation of CDK4 was mediated by cAMP and ERK-1/2. In contrast to granulosa cells in intact follicles, FSH or cAMP significantly increased cyclin D2 protein levels in cultured granulosa cells but failed to induce DNA synthesis. Collectively, these data suggest that granulosa cells of preantral follicles, which are destined to enter the S phase during the estrous cycle, contain necessary amounts of cyclin D2 and other G1 phase components. FSH stimulation results in the formation and activation of the cyclin D2/CDK4 complex leading to DNA synthesis. This mechanism may be necessary for rapid movement of follicles from preantral to antral stages during the short duration of the murine estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号