首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is unclear how changing atmospheric composition will influence the plant–soil interactions that determine soil organic matter (SOM) levels in fertile agricultural soils. Positive effects of CO2 fertilization on plant productivity and residue returns should increase SOM stocks unless mineralization or biomass removal rates increase in proportion to offset gains. Our objectives were to quantify changes in SOM stocks and labile fractions in prime farmland supporting a conventionally managed corn–soybean system and the seasonal dynamics of labile C and N in soybean in plots exposed to elevated [CO2] (550 ppm) under free-air concentration enrichment (FACE) conditions. Changes in SOM stocks including reduced C/N ratios and labile N stocks suggest that SOM declined slightly and became more decomposed in all plots after 3 years. Plant available N (>273 mg N kg−1) and other nutrients (Bray P, 22–50 ppm; extractable K, 157–237 ppm; Ca, 2,378–2,730 ppm; Mg, 245–317 ppm) were in the high to medium range. Exposure to elevated [CO2] failed to increase particulate organic matter C (POM-C) and increased POM-N concentrations slightly in the surface depth despite known increases (≈30%) in root biomass. This, and elevated CO2 efflux rates indicate accelerated decay rates in fumigated plots (2001: elevated [CO2]: 10.5 ± 1.2 μmol CO2 m−2 s−1 vs. ambient: 8.9 ± 1.0 μmol CO2 m−2 s−1). There were no treatment-based differences in the within-season dynamics of SOM. Soil POM-C and POM-N contents were slightly greater in the surface depth of elevated than ambient plots. Most studies attribute limited ability of fumigated soils to accumulate SOM to N limitation and/or limited plant response to CO2 fertilization. In this study, SOM turnover appears to be accelerated under elevated [CO2] even though soil moisture and nutrients are non-limiting and plant productivity is consistently increased. Accelerated SOM turnover rates may have long-term implications for soil’s productive potential and calls for deeper investigation into C and N dynamics in highly-productive row crop systems.  相似文献   

2.
Emission of hydrocarbons by trees has a crucial role in the oxidizing potential of the atmosphere. In particular, isoprene oxidation leads to the formation of tropospheric ozone and other secondary pollutants. It is expected that changes in the composition of the atmosphere will influence the emission rate of isoprene, which may in turn feedback on the accumulation of pollutants and greenhouse gases. We investigated the isoprene synthase (ISPS) gene expression and the ISPS protein levels in aspen trees exposed to elevated ozone (O(3)) and/or elevated carbon dioxide (CO(2)) in field-grown trees at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site. Elevated O(3) reduced ISPS mRNA and the amount of ISPS protein in aspen leaves, whereas elevated CO(2) had no significant effect. Aspen clones with different O(3) sensitivity showed different levels of inhibition under elevated O(3) conditions. The drop in ISPS protein levels induced a drop in the isoprene emission rate under elevated O(3). However, the data indicated that other mechanisms also contributed to the observed strong inhibition of isoprene emission under elevated O(3).  相似文献   

3.
When measured at a same CO(2) concentration, net photosynthetic rate is often significantly lower in long-term high CO(2)-grown plants than the ambient CO(2)-grown ones. This phenomenon is termed photosynthetic acclimation or down-regulation. Although there have been many reports and reviews, the mechanism(s) of the photosynthetic acclimation is not very clear. Combining the work of the authors' group, this paper briefly reviews the progress in studies on the mechanism(s) of the photosynthetic acclimation to elevated CO(2). It is suggested that besides the possible effects of respiration enhancement and excessive photosynthate accumulation, RuBP carboxylation limitation and RuBP regeneration limitation are probably the main factors leading to the photosynthetic acclimation.  相似文献   

4.
Expression of 4600 poplar expressed sequence tags (ESTs) was studied over the 2001-2002 growing seasons using trees of the moderately ozone (O(3))-tolerant trembling aspen (Populus tremuloides) clone 216 exposed to elevated CO(2) and/or O(3) for their entire 5-yr life history. Based on replication of the experiment in years 2001 and 2002, 238 genes showed qualitatively similar expression in at least one treatment and were retained for analysis. Of these 238 genes, 185 were significantly regulated (1.5-fold) from one year to the other in at least one treatment studied. Less than 1% of the genes were regulated 2-fold or more. In the elevated CO(2) treatment, relatively small numbers of genes were up-regulated, whereas in the O(3) treatment, higher expression of many signaling and defense-related genes and lower expression of several photosynthesis and energy-related genes were observed. Senescence-associated genes (SAGs) and genes involved in the flavonoid pathway were also up-regulated under O(3), with or without CO(2) treatment. Interestingly, the combined treatment of CO(2) plus O(3) resulted in the differential expression of genes that were not up-regulated with individual gas treatments. This study represents the first investigation into gene expression following long-term exposure of trees to the interacting effects of elevated CO(2) and O(3) under field conditions. Patterns of gene-specific regulation described in this study correlated with previously published physiological responses of aspen clone 216.  相似文献   

5.
Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine‐root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our study was conducted in a CO2‐enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used 15N isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were twofold: (1) to determine whether N is available for root acquisition in deeper soil and (2) to determine whether elevated [CO2], which has increased inputs of labile C resulting from greater fine‐root mortality at depth, has altered N cycling rates. Although gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where rates of microbial consumption of mineral N were reduced relative to production. Overall, up to 60% of potential gross N mineralization and 100% of potential net N mineralization occurred below 15 cm depth at this site. This finding was supported by in situ measurements from ion‐exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.  相似文献   

6.
Saplings of four clones of Sitka spruce and cherry were grown for three and two growing seasons, respectively, in open top chambers at two CO2 concentrations (≈ 350 and ≈ 700 μmol mol–1) to determine whether the increase in total biomass brought about by enhanced [CO2] is a result of a transient or persistent effect in nonlimiting conditions. Classical growth analysis was applied to both species and mean current relative growth rate of total dry mass (RT) and leaf dry mass (RL), and period relative growth rate of total dry mass ( ) and leaf dry mass ( ) were calculated. Sitka spruce saplings and cherry seedlings showed a positive growth response to elevated [CO2], and at the end of the experiments both species were ≈ 40% larger in elevated [CO2] than in ambient [CO2]. As a result, the period mean and were significantly higher in elevated [CO2]. The differences in plant dry mass at the end of the experiments were a consequence of the more rapid growth in the early phase of exposure to elevated [CO2]. After this initial phase mean RT and RL were similar or even lower in elevated [CO2] than in ambient [CO2]. NAR of both species was much higher in elevated [CO2], whereas both LAR, SLA, and LMR showed the opposite trend. The higher LAR and SLA of plants in ambient [CO2] contributed to a compensation by which they maintained RT similar to that of elevated [CO2] saplings despite lower NAR and photosynthetic rate. However, when the same size the trees were similar amongst the [CO2] treatments, indicating that one of the main effect of elevated [CO2] on tree growth is to speed-up early development in all aspects.  相似文献   

7.
Accurately predicting plant function and global biogeochemical cycles later in this century will be complicated if stomatal conductance (g(s)) acclimates to growth at elevated [CO(2)], in the sense of a long-term alteration of the response of g(s) to [CO(2)], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO(2)] of interest. Photosynthetic acclimation to long-term growth at elevated [CO(2)] occurs frequently. Acclimation of g(s) has rarely been examined, even though stomatal density commonly changes with growth [CO(2)]. Soybean was grown under field conditions at ambient [CO(2)] (378 micromol mol(-1)) and elevated [CO(2)] (552 micromol mol(-1)) using free-air [CO(2)] enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, vol IV, 221-224) with measurements of leaf gas exchange. The dependence of g(s) on A, h and [CO(2)] at the leaf surface was unaltered by long-term growth at elevated [CO(2)]. This suggests that the commonly observed decrease in g(s) under elevated [CO(2)] is due entirely to the direct instantaneous effect of [CO(2)] on g(s) and that there is no longer-term acclimation of g(s) independent of photosynthetic acclimation. The model accurately predicted g(s) for soybean growing under ambient and elevated [CO(2)] in the field. Model parameters under ambient and elevated [CO(2)] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO(2)] could be modelled without the need for parameterization at each growth [CO(2)].  相似文献   

8.
During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization, and partitioning influence the responsiveness of these desert shrubs during long-term exposure to elevated [CO(2)].  相似文献   

9.
Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass at the current CO2 level) may occur. We analysed literature sources that studied CO22environment interactions on the growth of herbaceous species and tree seedlings during the vegetative phase. For each experiment we calculated the difference in BER for plants that were grown under 'optimal' and 'non-optimal' conditions. Assuming that interactions would be most apparent if the environmental stress strongly diminished growth, we scaled the difference in the BER values by the growth reduction due to the stress factor. In our compilation we found a large variability in CO22environment interactions between experiments. To test the impact of experimental design, we simulated a range of analyses with a plant-to-plant variation in size common in experimental plant populations, in combination with a number of replicates generally used in CO22environment studies. A similar variation in results was found as in the compilation of real experiments, showing the strong impact of stochasticity. We therefore caution against strong inferences derived from single experiments and suggest rather a reliance on average interactions across a range of experiments. Averaged over the literature data available, low soil nutrient supply or sub-optimal temperatures were found to reduce the proportional growth stimulation of elevated CO2. In contrast, BER increased when plants were grown at low water supply, albeit relatively modestly. Reduced irradiance or high salinity caused BER to increase in some cases and decrease in others, resulting in an average interaction with elevated CO2 that was not significant. Under high ozone concentrations, the relative growth enhancement by elevated CO2 was strongly increased, to the extent that high CO2 even compensated in an absolute way for the harmful effect of ozone on growth. No systematic difference in response was found between herbaceous and woody species for any of the environmental variables considered.  相似文献   

10.
Elevated atmospheric CO2 concentration ([CO2]) generally enhances C3 plant productivity, whereas acute heat stress, which occurs during heat waves, generally elicits the opposite response. However, little is known about the interaction of these two variables, especially during key reproductive phases in important temperate food crops, such as soybean (Glycine max). Here, we grew soybean under elevated [CO2] and imposed high‐ (+9°C) and low‐ (+5°C) intensity heat waves during key temperature‐sensitive reproductive stages (R1, flowering; R5, pod‐filling) to determine how elevated [CO2] will interact with heat waves to influence soybean yield. High‐intensity heat waves, which resulted in canopy temperatures that exceeded optimal growth temperatures for soybean, reduced yield compared to ambient conditions even under elevated [CO2]. This was largely due to heat stress on reproductive processes, especially during R5. Low‐intensity heat waves did not affect yields when applied during R1 but increased yields when applied during R5 likely due to relatively lower canopy temperatures and higher soil moisture, which uncoupled the negative effects of heating on cellular‐ and leaf‐level processes from plant‐level carbon assimilation. Modeling soybean yields based on carbon assimilation alone underestimated yield loss with high‐intensity heat waves and overestimated yield loss with low‐intensity heat waves, thus supporting the influence of direct heat stress on reproductive processes in determining yield. These results have implications for rain‐fed cropping systems and point toward a climatic tipping point for soybean yield when future heat waves exceed optimum temperature.  相似文献   

11.
The aim of this study was to analyse and model the effects of elevated temperature and carbon dioxide concentration on daily height growth of 20-year-old Scots pines (Pinus sylvestris L.). The trees were grown with a low nitrogen supply in closed chambers with a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations (ambient and twice ambient). The temperature elevation corresponded to the predicted increase at the site after a doubling in atmospheric CO2. The height growth of Scots pines was first empirically studied in terms of its onset, cessation and duration, and the allocation of daily height growth within the growing period in 2000 and 2001, and then a model predicting daily height growth as a function of daily temperature and temperature sum was developed. The empirical results showed elevated temperature to be the dominant variable explaining variation in daily height growth. Elevated temperature also hastened both the onset and cessation of height growth, and the temperature sums for both of them were higher in the elevated than in the ambient temperature treatments. The daily variation in height growth could also be explained by the daily mean temperature in the model. Elevated CO2 concentration had no effect on the onset, cessation or duration of height growth. The amount of height growth was not affected by any of the treatments.  相似文献   

12.
ABSTRACT

Birch (Betula pendula Roth.) seedlings were kept for two growing seasons under ambient (~350 µmol mol-1) and elevated (~700 µmol mol-1) [CO2]. The present study was designed to examine the effects of [CO2] and pot size on growth and carbon allocation under conditions of non-limiting water and nutrient supply, in order to separate the effects of source-sink interaction from the effects of nutrient deficiency. The manipulation of the source-sink relations had a strong influence on the growth response to elevated [CO2]. When the rooting volume was inadequate, it resulted in a source-sink imbalance which constrained growth under elevated [CO2]. When root exploration was unconstrained, total dry mass was significantly increased (by about 24%) under elevated [CO2]. However, the allometric relationships in allocation pattern and in morphogenetic development were not affected by either [CO2] or pot treatments when the saplings were of the same size. Thus, by constraining dry mass production, small sinks affected the magnitude of the growth responses to elevated [CO2], but did not affect the plant allocation pattern and allometric relationships when nutrient supply was non-limiting. However, by slowing down growth, sink restrictions counteract the speed-up of ontogeny which is the main effect of elevated [CO2] on tree growth.  相似文献   

13.
14.
We previously used dual stable isotope techniques to partition soil CO2 efflux into three source components (rhizosphere respiration, litter decomposition, and soil organic matter (SOM) oxidation) using experimental chambers planted with Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings. The components responded differently to elevated CO2 (ambient + 200 mol mol–1) and elevated temperature (ambient + 4 °C) treatments during the first year. Rhizosphere respiration increased most under elevated CO2, and SOM oxidation increased most under elevated temperature. However, many studies show that plants and soil processes can respond to altered climates in a transient way. Herein, we extend our analysis to 2 years to evaluate the stability of the responses of the source components. Total soil CO2 efflux increased significantly under elevated CO2 and elevated temperature in both years (1994 and 1995), but the enhancement was much less in 1995. Rhizosphere respiration increased less under elevated temperature in 1995 compared with 1994. Litter decomposition also tended to increase comparatively less in 1995 under elevated CO2, but was unresponsive to elevated temperature between years. In contrast, SOM oxidation was similar under elevated CO2 in the 2 years. Less SOM oxidation occurred under elevated temperature in 1995 compared with 1994. Our results indicate that temporal variations can occur in CO2 production by the sources. The variations likely involve responses to antecedent physical disruption of the soil and physiological processes.  相似文献   

15.
Although increasing concentrations of atmospheric CO2 are predicted to have substantial impacts on plant growth and functioning of ecosystems, there is insufficient understanding of the responses of belowground processes to such increases. We investigated the effects of different dark septate root endophytic (DSE) fungi on growth and nutrient acquisition by Pinus sylvestris seedlings under conditions of N limitation and at ambient and elevated CO2 (350 or 700 μ1 CO2 l?1). Each seedling was inoculated with one of the following species: Phialocephala fortinii (two strains), Cadophora finlandica, Chloridium paucisporum, Scytalidium vaccinii, Meliniomyces variabilis and M. vraolstadiae. The trial lasted 125 days. During the final 27 days, the seedlings were labeled with 14CO2 and 15NH 4 + . We measured extraradical hyphal length, internal colonization, plant biomass, 14C allocation, and plant N and 15N content. Under elevated CO2, the biomass of seedlings inoculated with DSE fungi was on average 17% higher than in control seedlings. Simultaneously, below-ground respiration doubled or trebled, and as a consequence carbon use efficiency by the DSE fungi significantly decreased. Shoot N concentration decreased on average by 57% under elevated CO2 and was lowest in seedlings inoculated with S. vaccinii. Carbon gain by the seedlings despite reduced shoot N concentration indicates that DSE fungi increase plant nutrient use efficiency and are therefore more beneficial to the plant under elevated CO2.  相似文献   

16.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

17.
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO2]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G s) to instantaneous changes in external [CO2] (C a) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO2] (1,500 ppm) and sub-ambient [O2] (13.0 %) compared to control conditions (380 ppm CO2, 20.9 % O2). We found that active control of stomatal aperture to [CO2] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C a were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO2]. The relationship between the degree of stomatal aperture control to C a above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO2] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.  相似文献   

18.
The effects of atmospheric CO2 enrichment on mature trees in their natural environment are largely unknown. Here we present a new, and inexpensive technique which can be used in situ to address some key physiological questions related to the CO2 problem. Small, light-weight cups mounted on the lower side of rigid leaves at the top of tall tropical forest trees were supplied with CO2-enriched air derived from a low-technology air mixing device utilizing forest floor CO2 evolution. We present the scientific rationale for such field experiments, technical details, an assessment of potential cup artifacts and first results illustrating effects of elevated CO2 on stomata and carbohydrate accumulation in the canopies of mature trees.  相似文献   

19.
20.
While exposure of C3 plants to elevated [CO2] would be expected to reduce production of reactive oxygen species (ROS) in leaves because of reduced photorespiratory metabolism, results obtained in the present study suggest that exposure of plants to elevated [CO2] can result in increased oxidative stress. First, in Arabidopsis and soybean, leaf protein carbonylation, a marker of oxidative stress, was often increased when plants were exposed to elevated [CO2]. In soybean, increased carbonyl content was often associated with loss of leaf chlorophyll and reduced enhancement of leaf photosynthetic rate (Pn) by elevated [CO2]. Second, two-dimensional (2-DE) difference gel electrophoresis (DIGE) analysis of proteins extracted from leaves of soybean plants grown at elevated [CO2] or [O3] revealed that both treatments altered the abundance of a similar subset of proteins, consistent with the idea that both conditions may involve an oxidative stress. The 2-DE analysis of leaf proteins was facilitated by a novel and simple procedure to remove ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from soluble soybean leaf extracts. Collectively, these findings add a new dimension to our understanding of global change biology and raise the possibility that oxidative signals can be an unexpected component of plant response to elevated [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号