首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.  相似文献   

4.
While the highly consistent gene order and axial colinear patterns of expression seem to be a feature of vertebrate hox gene clusters, this pattern may be less well conserved across the rest of the bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is 5'-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5-3'.) The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.  相似文献   

5.
Hox genes,responsible for regional specification along the anteroposterior axis in embryogenesis,are found as clusters in most eumetazoan genomes sequenced to date.Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters,derived from the so-called two-round whole genome duplications (2R-WGDs),are observed.Overall,the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans.A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast,existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization.For this group of species,whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates,therefore the number of Hox clusters may not serve as a good indicator of their ploidy level.  相似文献   

6.

Background

Hox genes are key elements in patterning animal development. They are renowned for their, often, clustered organisation in the genome, with supposed mechanistic links between the organisation of the genes and their expression. The widespread distribution and comparable functions of Hox genes across the animals has led to them being a major study system for comparing the molecular bases for construction and divergence of animal morphologies. Echinoderms (including sea urchins, sea stars, sea cucumbers, feather stars and brittle stars) possess one of the most unusual body plans in the animal kingdom with pronounced pentameral symmetry in the adults. Consequently, much interest has focused on their development, evolution and the role of the Hox genes in these processes. In this context, the organisation of echinoderm Hox gene clusters is distinctive. Within the classificatory system of Duboule, echinoderms constitute one of the clearest examples of Disorganized (D) clusters (i.e. intact clusters but with a gene order or orientation rearranged relative to the ancestral state).

Results

Here we describe two Hox genes (Hox11/13d and e) that have been overlooked in most previous work and have not been considered in reconstructions of echinoderm Hox complements and cluster organisation. The two genes are related to Posterior Hox genes and are present in all classes of echinoderm. Importantly, they do not reside in the Hox cluster of any species for which genomic linkage data is available.

Conclusion

Incorporating the two neglected Posterior Hox genes into assessments of echinoderm Hox gene complements and organisation shows that these animals in fact have Split (S) Hox clusters rather than simply Disorganized (D) clusters within the Duboule classification scheme. This then has implications for how these genes are likely regulated, with them no longer covered by any potential long-range Hox cluster-wide, or multigenic sub-cluster, regulatory mechanisms.
  相似文献   

7.
The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.  相似文献   

8.
The Hox gene cluster, and its evolutionary sister the ParaHox gene cluster, pattern the anterior-posterior axis of animals. The spatial and temporal regulation of the genes seems to be intimately linked to the gene order within the clusters. In some animals the tight organisation of the clusters has disintegrated. We note that these animals develop in a derived fashion relative to the norm of their respective lineages. Here we present the genomic organisation of the ParaHox genes of Ciona intestinalis, and note that tight clustering has been lost in evolution. We present a hypothesis that the Hox and ParaHox clusters are constrained as ordered clusters by the mechanisms producing temporal colinearity; when temporal colinearity is no longer needed or used during development, the clusters can fall apart. This disintegration may be mediated by the invasion of transposable elements into the clusters, and subsequent genomic rearrangements.  相似文献   

9.
The rise and fall of Hox gene clusters   总被引:9,自引:0,他引:9  
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.  相似文献   

10.
The determination of long segments of DNA sequences encompassing the beta- and alpha-globin gene clusters has provided an unprecedented data base for analysis of genome evolution and regulation of gene clusters. A newly developed computer tool kit generates local alignments between such long sequences in a space-efficient manner, helps the user analyze the alignments effectively, and finds consistently aligning blocks of sequences in multiple pairwise comparisons. Such sequence analyses among the beta-like globin gene clusters of human, galago, rabbit, and mouse have revealed the general patterns of evolution of this gene cluster. Alignments in the flanking regions are very useful in assigning orthologous relationships. Investigation of such matches between the mouse and human beta-like globin gene clusters has led to a reassessment of some orthologous assignments in mouse and to a revision of the proposed pathway for evolution of this gene cluster. In general, the interspersed repetitive elements have inserted independently, presumably via a retrotransposition mechanism, in the different mammalian lineages. However, some examples of ancient L1 repeats are found, including one between the epsilon- and gamma-globin genes that appears to have been in the ancestral eutherian gene cluster. Prominent matching sequences are found in a long region 5' to the epsilon-globin gene, the locus control region (LCR) that is a positive regulator of the entire gene cluster. Three-way alignments among the human, goat, and rabbit sequences can extend for > or = 3 kb in part of the LCR (DNase hypersensitive site 3), indicating that the cis-acting components of this complex regulatory region cover a long segment of DNA. In contrast to the beta-like globin gene clusters, the alpha-like globin gene clusters of many mammals occur in very G+C-rich isochores and contain prominent CpG islands. The regions between the alpha-like globin genes are evolving faster than the intergenic regions of the beta-like globin gene clusters. The contrasts between the two gene clusters can be attributed to differences in DNA metabolism in the isochore. The proximal control elements of the rabbit alpha-globin gene are located both 5' to and within the gene. All of this region is part of a prominent CpG island that may be acting as an extended, enhancer- independent promoter. One can hypothesize that the analogue to the LCR in the alpha-globin gene cluster may interface with the distinctive alpha-globin promoter in ways different from the interaction between the beta LCR and the promoters of beta-like globin genes.(ABSTRACT TRUNCATED AT 400 WORDS)   相似文献   

11.
Vertebrate homeobox genes of the Hox family are, like Drosophila homeotic genes, organized in gene clusters and show a strict correspondence, or collinearity, between the order of the genes (3' to 5') within the chromosomal cluster and that of their expression domains (anterior to posterior) in the embryo. Recent data obtained from embryonal carcinoma cells induced to differentiate by retinoic acid cast some light on the molecular mechanisms underlying the collinear expression of the Hox genes.  相似文献   

12.
P C Wensink  S Tabata  C Pachl 《Cell》1979,18(4):1231-1246
An examination of cloned Drosophila DNA has revealed large clusters of densely spaced, short (less than or equal to 1 kb), moderately repetitive elements. Different clusters have many of the same repetitive elements, but these elements are arranged differently in each cluster. It is improbable that this clustered arrangement can be detected by conventional reassociation kinetic and electron microscopic techniques, but it can be detected and features of its fine structure can be determined by a two-dimensional version of Southern's blotting technique. The genomic organization of these clustered repetitive elements was investigated by hybridizing restriction fragments of cloned DNA to polytene chromosomes, to filter-bound recombinant DNA clones and to Southern blots of total Drosophila DNA. These studies demonstrated that clusters occur in euchromatic regions of the chromosomes and that at least one of the clusters has the same repetitive element organization in cloned and in chromosomal DNA. These studies also demonstrated that copies of the elements from one cluster are scattered in at least 1000 chromosomal regions. These regions appear to have differing concentrations of repetitive DNA, but together they account for a large fraction of Drosophila's moderately repetitive DNA. Aside from indicating the genomic organization of cluster elements, this work has identified cluster elements throughout a 9 kb region neighboring one of the heat shock genes, throughout the intron of the major rDNA repeat and within the apparently transposable element, 412.  相似文献   

13.
Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA-D). Traditionally, the uninterrupted Hox cluster (Hox1-14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1-13 that are globally regulated by the "Hox code" and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR-based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real-time RT-PCR suggested its hindgut-associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9-13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1-to-1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous.  相似文献   

14.
15.
The single amphioxus Hox cluster contains 15 genes and may well resemble the ancestral chordate Hox cluster. We have sequenced the Hox genomic complement of the European amphioxus Branchiostoma lanceolatum and compared it to the American species, Branchiostoma floridae, by phylogenetic footprinting to gain insights into the evolution of Hox gene regulation in chordates. We found that Hox intergenic regions are largely conserved between the two amphioxus species, especially in the case of genes located at the 3' of the cluster, a trend previously observed in vertebrates. We further compared the amphioxus Hox cluster with the human HoxA, HoxB, HoxC, and HoxD clusters, finding several conserved noncoding regions, both in intergenic and intronic regions. This suggests that the regulation of Hox genes is highly conserved across chordates, consistent with the similar Hox expression patterns in vertebrates and amphioxus.  相似文献   

16.
Ogishima S  Tanaka H 《Gene》2007,387(1-2):21-30
Hox cluster has key roles in regulating the patterning of the antero-posterior axis in a metazoan embryo. It consists of the anterior, central and posterior genes; the central genes have been identified only in bilaterians, but not in cnidarians, and are responsible for archiving morphological complexity in bilaterian development. However, their evolutionary history has not been revealed, that is, there has been a "missing link". Here we show the evolutionary history of Hox clusters of 18 bilaterians and 2 cnidarians by using a new method, "motif-based reconstruction", examining the gain/loss processes of evolutionarily conserved sequences, "motifs", outside the homeodomain. We successfully identified the missing link in the evolution of Hox clusters between the cnidarian-bilaterian ancestor and the bilaterians as the ancestor of the central genes, which we call the proto-central gene. Exploring the correspondent gene with the proto-central gene, we found that one of the acoela Hox genes has the same motif repertory as that of the proto-central gene. This interesting finding suggests that the acoela Hox cluster corresponds with the missing link in the evolution of the Hox cluster between the cnidarian-bilaterian ancestor and the bilaterians. Our findings suggested that motif gains/diversifications led to the explosive diversity of the bilaterian body plan.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号