首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Linkage of the anonymous DNA marker D3S47 (CRI-C17) and autosomal dominant retinitis pigmentosa (ADRP) was tested in a large, extended family with type II (late onset) ADRP. D3S47 has been shown previously to be tightly linked to the RP locus in one family with type I (early onset) ADRP (McWilliams et al., 1989, Genomics 5: 619-622). Linkage between ADRP type II and D3S47 has recently been excluded in a single family (Ingelhearn et al., 1990, Genomics 6: 168-173). Results of our linkage analysis clearly establish that type II ADRP in our family is unlinked to D3S47. These findings support the hypothesis that type II ADRP is genetically distinct from type I ADRP.  相似文献   

2.
Members of a large pedigree of Irish origin presenting with early onset Type I autosomal dominant retinitis pigmentosa (ADRP) have been typed for D3S47 (C17), a polymorphic marker from the long arm of chromosome 3. Significant, tight linkage of ADRP to D3S47, with a lod score of 14.7 maximizing at 0.00 recombination, has been obtained, hence localizing the ADRP gene (RP1) segregating in this pedigree to 3q.  相似文献   

3.
Linkage mapping in a large, seven-generation family with type 2 autosomal dominant retinitis pigmentosa (ADRP) demonstrates linkage between the disease locus (RP1) and DNA markers on the short arm of human chromosome 8. Five markers were most informative for mapping ADRP in this family using two-point linkage analysis. The markers, their maximum lod scores, and recombination distances were ANK1 (ankyrin)--2.0 at 16%; D8S5 (TL11)--5.3 at 17%; D8S87 [a(CA)n repeat]--7.2 at 14%; LPL (lipoprotein lipase)--1.5 at 26%; and PLAT (plasminigen activator, tissue)--10.6 at 7%. Multipoint linkage analysis, using a simplified pedigree structure for the family (which contains 192 individuals and two inbreeding loops), gave a maximum lod score of 12.2 for RP1 at a distance 8.1 cM proximal to PLAT in the pericentric region of the chromosome. Based on linkage data from the CEPH (Paris) reference families and physical mapping information from a somatic cell hybrid panel of chromosome 8 fragments, the most likely order for four of these five loci and the diseases locus is 8pter-LPL-D8S5-D8S87-PLAT-RP1. (The precise location of ANK1 relative to PLAT in this map is not established). The most likely location for RP1 is in the pericentric region of the chromosome. Recently, several families with ADRP with tight linkage to the rhodopsin locus at 3q21-q24 were reported and a number of specific rhodopsin mutations in families with ADRP have since been reported. In other ADRP families, including the one in this study, linkage to rhodopsin has been excluded. Thus mutations at two different loci, at least, have been shown to cause ADRP. There is no remarkable clinical disparity in the expression of disease caused by these different loci.  相似文献   

4.
Retinitis pigmentosa (RP) is a debilitating disease of the retina affecting ∼1.5 million people worldwide. RP shows remarkable heterogeneity both clinically and genetically, with more than 40 genetic loci implicated, 12 of which account for the autosomal dominant form (adRP) of inheritance. We have recently identified a French Canadian family that presents with early onset adRP. After exclusion of all known loci for adRP, a genome-wide search established firm linkage with a marker from the short arm of chromosome 9 (LOD score of 6.3 at recombination fraction θ=0). The linked region is flanked by markers D9S285 and D9S1874, corresponding to a genetic distance of 31 cM, in the region 9p22-p13.  相似文献   

5.
The association between trisomy 21 and a high incidence of atrioventricular canal defects (AVCDs) indicates that a locus on chromosome 21 is involved in this congenital heart defect. We have investigated whether a genetic locus on chromosome 21 is also involved in familial nonsyndromic AVCDs. Short tandem repeat polymorphisms (STRPs) from chromosome 21 were used for linkage analysis of a family having multiple members affected with AVCDs. In this family, the gene for AVCDs is transmitted as an autosomal dominant with incomplete penetrance. The affected family members are nonsyndromic and have normal karyotypes. Two-point and multipoint linkage analyses produced significantly negative LOD scores for all informative markers. A comparison of the overlapping exclusion distances obtained for each marker at LOD equal -2.0 with the 1000:1 consensus genetic map of the markers, excludes chromosome 21 as the genetic location for AVCDs in this family. The exclusion of chromosome 21 indicates that another gene, not located on chromosome 21, is involved in atrioventricular canal defect formation.  相似文献   

6.
A linkage analysis is reported for three branches of a single family segregating for autosomal dominant retinitis pigmentosa. A statistically significant lod score of 3.9 is obtained for the RP locus and AMY2 at a recombination frequency of 1%. This linkage indicates that the RP locus is on the no. 1 chromosome since the AMY2 locus has been placed on the short arm of 1. Lod scores are reported for four other loci on chromosome 1; none of these achieve statistical significance. Analyses are reported for 23 additional autosomal markers and close linkage with RP can be excluded for a number of these.  相似文献   

7.
In this study the mechanism of nuclear importation of the splicing factor PRPF31 is examined and the impact of two disease-linked mutations, A194E and A216P, assessed. Using pull-down assays with GST-tagged importin proteins, we demonstrate that His-tagged PRPF31 interacts with importin beta1 for translocation to the nucleus, with no requirement for importin alpha1. The A194E and A216P mutations have no affect on this interaction. Fluorescence recovery after photobleaching (FRAP) was used to estimate the rate of movement of EGFP-tagged PRPF31 into the nuclei of live cells. The kinetics indicated a two-component recovery process; a fast component with tau approximately 6 s and a slow component with tau approximately 80 s. The mutations affected neither component. We conclude that the two mutations have no negative effect on interaction with the nuclear importation machinery. Reduced mutant protein solubility resulting in an insufficiency of splicing activity in cells with a very high metabolic demand remains the most likely explanation for the disease pathology in ADRP patients.  相似文献   

8.
Retinitis pigmentosa (RP) is a genetically heterogeneous group of retinal degenerative disorders resulting in severe visual loss and blindness that have remained incurable till date. We report the mapping of the disease locus in a 3-generation family of Indian origin with autosomal dominant RP (ADRP). Diagnosis of RP and recruitment was made after a complete clinical evaluation of all members. Manifestations of the disease included night blindness with blurred central vision in some cases, loss of peripheral vision, and diffuse degeneration of the retinal pigment epithelium. Linkage analysis using microsatellite markers was carried out on 34 members (14 affected). After testing for linkage to known retinal dystrophy loci as well as a subsequent genome-wide analysis, we detected linkage to markers on chromosome 6q23: D6S262 at 130 cM, D6S457 (130 cM) and D6S1656 (131 cM) gave significant 2-point LOD scores of 3.0–3.8. Multipoint LOD scores of ≥3.0 were obtained for markers between 121 and 130 cM. Haplotype analysis with several markers in the same region on chromosome 6 shows a disease-cosegregating region of about 25 Mb between 109 and 135 Mb. There are no known RP genes in this interval, which contains >100 genes. This study provides evidence for a novel ADRP locus on chromosome 6q23.  相似文献   

9.
Recently Dryja and his co-workers observed a mutation in the 23d codon of the rhodopsin gene in a proportion of autosomal dominant retinitis pigmentosa (ADRP) patients. Linkage analysis with a rhodopsin-linked probe C17 (D3S47) was carried out in two large British ADRP families, one with diffuse-type (D-type) RP and the other with regional-type (R-type) RP. Significantly positive lod scores (lod score maximum [Zmax] = +5.58 at recombination fraction [theta] = .0) were obtained between C17 and our D-type ADRP family showing complete penetrance. Sequence and oligonucleotide analysis has, however, shown that no point mutation at the 23d codon exists in affected individuals in our complete-penetrance pedigree, indicating that another rhodopsin mutation is probably responsible for ADRP in this family. Significantly negative lod scores (Z less than -2 at theta = .045) were, however, obtained between C17 and our R-type family which showed incomplete penetrance. Previous results presented by this laboratory also showed no linkage between C17 and another large British R-type ADRP family with incomplete penetrance. This confirms genetic heterogeneity. Some types of ADRP are being caused by different mutations in the rhodopsin locus (3q21-24) or another tightly linked gene in this region, while other types of ADRP are the result of mutations elsewhere in the genome.  相似文献   

10.
Linkage analysis was performed on a large Dutch family with autosomal dominant retinitis pigmentosa. Linkage was found to the RP17 locus on chromosome 17q22, which was previously described in two South African families by Bardien et al. (1995, 1997). Assuming that the disease phenotypes in these families are caused by the same gene, the RP17 critical region is refined to a 7.7-cM interval between markers D17S1607 and D17S948. Two positional candidate genes, the retina-specific amine oxidase (RAO) gene (AOC2) and the cone transducin γ gene (GNGT2), were excluded. Received: 7 September 1998 / Accepted: 23 November 1998  相似文献   

11.
12.
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration, which has X-linked, autosomal recessive and autosomal dominant forms. The disease genes in families with autosomal dominant retinitis pigmentosa (adRP) have been linked to six loci, on 3q, 6p, 7p, 7q, 8q and 19q. In a large American family with late-onset adRP, microsatellite markers were used to test for linkage to the loci on 3q, 6p, 7p, 7q and 8q. Linkage was found to 7q using the marker D7S480. Additional microsatellite markers from 7q were then tested. In total, five markers, D7S480, D7S514, D7S633, D7S650 and D7S677, show statistically significant evidence for link-age in this family, with a maximum two-point lod score of 5.3 at 0% recombination from D7S514. These results confirm an earlier report of linkage to an adRP locus (RP10) in an unrelated family of Spanish origin and indicate that RP10 may be a significant gene for inherited retinal degeneration. In addition, we used recently reported microsatellite markers from 7q to refine the linkage map of the RP10 locus.  相似文献   

13.
Retinitis pigmentosa is an inherited form of blindness caused by progressive retinal degeneration. P. McWilliam et al. (1989, Genomics 5: 619-622) demonstrated close genetic linkage between autosomal dominant retinitis pigmentosa (ADRP) and locus D3S47 (C17) in a single early onset pedigree. The marker C17 maps to the long arm of chromosome 3. Clinically, the disease phenotype has been subdivided into at least two forms on the basis of age of onset, as well as electrodiagnostic criteria. We demonstrate that C17 is unlinked in a late onset pedigree, indicating that the phenotypic variation seen reflects underlying genetic heterogeneity.  相似文献   

14.
A form of autosomal dominant retinitis pigmentosa (adRP) mapping to chromosome 7p was recently reported by this laboratory, in a single large family from southeastern England. Further sampling of the family and the use a number of genetic markers from 7p have facilitated the construction of a series of multipoint linkage maps of the region with the most likely disease gene location. From this and haplotype data, the locus can now be placed between the markers D7S484 and D7S526, in an interval estimated to be 1.6-4 cM. Genetic distances between the markers previously reported to be linked to this region and those described in the recent whole-genome poly-CA map were estimated from data in this and other families. These data should assist in the construction of a physical map of the region and will help to identify candidate genes for the 7p adRP locus.  相似文献   

15.
16.
Retinitis pigmentosa (RP) is the most prevalent human retinopathy of genetic origin. Chromosomal locations for X-linked RP and autosomal dominant RP genes have recently been established. Multipoint analyses with ADRP and seven markers on the long arm of chromosome 3 demonstrate that the gene for rhodopsin, the pigment of the rod photoreceptors, cosegregates with the disease locus with a maximum lod score of approximately 19, implicating rhodopsin as a causative gene. Recent studies have indicated the presence of a point mutation at codon 23 in exon 1 of rhodopsin which results in the substitution of histidine for the highly conserved amino acid proline, suggesting that this mutation is a cause of rhodopsin-linked ADRP. This mutation is not present in the Irish pedigree in which ADRP has been mapped close to rhodopsin. Another mutation in the rhodopsin gene or in a gene closely linked to rhodopsin may be involved. Moreover, the gene in a second ADRP pedigree, with Type II late onset ADRP, does not segregate with chromosome 3q markers, indicating that nonallelic as well as perhaps allelic genetic heterogeneity exists in the autosomal dominant form of this disease.  相似文献   

17.
In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yielded a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families.  相似文献   

18.
Summary A linkage analysis has been performed on three Australian families segregating for autosomal dominant retinitis pigmentosa (ADRP). No evidence of linkage has been found in any of the pedigrees studied between the locus D3S47 and the gene for ADRP. The D3S47 locus was found to show very close linkage with the ADRP gene in a large Irish pedigree. Our study together with a similar report on a British family indicates that there is genetic heterogeneity in this disease.  相似文献   

19.
Genetic studies have revealed that 25 to 30% of autosomal dominant retinitis pigmentosa (adRP) families have mutations in the rhodopsin gene, while the remainder do not. More recently linkage data and mutation detection have demonstrated two further loci implicated in adRP, at an as yet unidentified gene on chromosome 8p and at the human gene homologue of the mouse Rds (Retinal Degeneration Slow) gene on chromosome 6p. We have previously reported exclusion of adRP from the rhodopsin locus on 3q in two large adRP families. We now report exclusion data for both families, on chromosomes 6 and 8, demonstrating that the adRP phenotype results from mutations in at least four locations.  相似文献   

20.
Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and excluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, the odds favoring X-linked dominant versus autosomal dominant inheritance are > 10(5):1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol "RP15."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号