首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phenolic amine compound, 4-S-cysteaminylphenol (4-S-CAP), was found to cause a selective destruction of follicular melanocytes. It was also recently found that 4-S-CAP can be a substrate for both tyrosinase and plasma monoamine oxidase (MAO). Both of these enzymes are capable of producing cytotoxic intermediates through their interaction with 4-S-CAP. To study the mechanism of selective melanocytotoxicity of phenolic amine compounds, we compared the in vivo depigmenting potency of 4-S-CAP and its three analogues; i.e., 4-S-HomoCAP, alpha-methyl(Me)-4-S-CAP and N,N-dimethyl(DiMe)-4-S-CAP, using black hair follicles. All four of these phenolic amine compounds possessed depigmenting potency. In this study we examined the kinetics of tyrosinase and MAO by these four compounds. 4-S-CAP and 4-S-HomoCAP were the substrates of both tyrosinase and MAO, whereas alpha-Me-4-S-CAP and N,N-DiMe-4-S-CAP were the substrates of tyrosinase alone. The rate of o-quinone formation by tyrosinase was not in parallel to the in vivo depigmenting potency of the tested compounds. It is therefore indicated that plasma MAO is not the enzyme directly responsible for the production of the melanocytotoxic intermediates from the phenolic amine compounds. We also found that the observed in vivo depigmentation results from complex processes involving the amount of o-quinone formed and the intracellular interaction of o-quinone with protein species.  相似文献   

2.
The relatively high co-occurrence of Parkinson’s disease (PD) and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR)-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM), the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn) that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR) and inhibit tyrosine hydroxylase (TH), both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA), led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB) light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in melanoma cells and in dopaminergic neuronal cells.  相似文献   

3.
The synthesis of melanin involves the oxidation of phenolic substrates by the enzyme tyrosinase. In vertebrates tyrosinase is present only in specialized cells (melanocytes), where it catalyses the oxidation of tyrosine and certain diphenolic intermediate products to quinones which polymerize to give rise to melanin. This specialized metabolic pathway provides a possible approach to the specific chemotherapy of malignant tumours of pigment cells (malignant melanoma). Certain analogues of tyrosine are oxidized by tyrosinase generating reactive orthoquinones with cytotoxic potential. One such analogue, 4-hydroxyanisole, has been investigated as a possible specific melanocytotoxic precursor. The parent compound inhibits DNA synthesis but exhibits little general toxicity, while the tyrosinase oxidation products are highly toxic to cells. The mechanism of this toxicity may involve semiquinone radicals. Encouraging initial results have been obtained from clinical pilot studies using intra-arterial infusion of hydroxyanisole in patients with localized recurrences of malignant melanoma.  相似文献   

4.
Down-regulation of melanin synthesis is required for recovery of pigmentary disorders and it is known that direct inhibitors of tyrosinase, the key enzyme in melanin synthesis, such as hydroquinone with a phenol structure, suppress melanin synthesis. We screened several phenolic derivatives using B16 melanoma cells and found that a biphenyl derivative, 2,2'-dihydroxy-5,5'-dipropyl-biphenyl (DDB), down-regulated melanin synthesis effectively. Although DDB has a phenol structure, it did not inhibit tyrosinase in vitro, thus we examined its mechanism in detail. Western blotting revealed that the amount of tyrosinase was decreased by DDB, and pulse-chase labeling and immunoprecipitation analysis showed a decrease of mature tyrosinase and acceleration of tyrosinase degradation in its presence. These results suggest that DDB down-regulates melanin synthesis by inhibiting the maturation of tyrosinase, leading to acceleration of tyrosinase degradation.  相似文献   

5.
Atypical protein kinase Czeta suppresses migration of mouse melanoma cells.   总被引:2,自引:0,他引:2  
Mouse melanoma B16 F1 cells cultured in RPMI 1640 supplemented with the melanin precursors tyrosine and phenylalanine display increased melanin levels and elevated migration while down-regulating protein kinase C (PKC)zeta to low levels. Although control experiments rule out a direct role by melanin, PKCzeta down-regulation is shown to be a critical determinant of cell migration. Transfection of high-motility cells with either wild-type PKCzeta or its regulatory domain suppresses migration. Known to bind to the regulatory domain of PKCzeta, the proapoptotic protein prostate apoptosis response-4 (Par-4) coimmunoprecipitates with PKCzeta as a 47-kDa protein. Transfection of Par-4 (or its leucine zipper element) further suppresses migration of low-motility cells (which express high levels of PKCzeta), whereas high-motility cells (which express low levels of PKCzeta) are unaffected by Par-4 overexpression. It is proposed that in nonmetastatic cells, the PKCzeta Par-4 complex provides a brake on migration that is released by melanin precursors that initiate PKCzeta down-regulation. Elevation of PKCzeta in melanoma cells, or preventing its down-regulation through the dietary restriction of tyrosine and phenylalanine, may therefore control metastatic behavior.  相似文献   

6.
Down‐regulation of melanin synthesis is required for recovery of pigmentary disorders and it is known that direct inhibitors of tyrosinase, the key enzyme in melanin synthesis, such as hydroquinone with a phenol structure, suppress melanin synthesis. We screened several phenolic derivatives using B16 melanoma cells and found that a biphenyl derivative, 2,2′‐dihydroxy‐5,5′‐dipropyl‐biphenyl (DDB), down‐regulated melanin synthesis effectively. Although DDB has a phenol structure, it did not inhibit tyrosinase in vitro, thus we examined its mechanism in detail. Western blotting revealed that the amount of tyrosinase was decreased by DDB, and pulse‐chase labeling and immunoprecipitation analysis showed a decrease of mature tyrosinase and acceleration of tyrosinase degradation in its presence. These results suggest that DDB down‐regulates melanin synthesis by inhibiting the maturation of tyrosinase, leading to acceleration of tyrosinase degradation.  相似文献   

7.
An EtOH extract of fruits of Piper longum was found to exhibit a potent inhibitory effect against α-melanocyte-stimulating hormone (α-MSH)-induced melanin production in B16 mouse melanoma cells. Bioassay-directed fractionation led to the isolation of prenylated phenolic compounds bakuchiol, bavachin, and isobavachalcone. These compounds and the crude extract of the fruits of P. longum may have suppressive effects against pigmentation by melanin in the skin.  相似文献   

8.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

9.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

10.
11.
Malignant melanoma (melanoma malignum) is one of the most dangerous types of tumor. It is very difficult to cure. In recent years, a lot of attention has been given to chemoprevention. This method uses natural and synthetic compounds to interfere with and inhibit the process of carcinogenesis. In this study, a new treatment strategy was proposed consisting of a combination of 5,7-dimethoxycoumarin (DMC), an activator of melanogenesis, and valproic acid (VPA), a well-known drug that is one of the histone deacetylase inhibitors (HDACis). In conjunction with 1 mM VPA, all of the tested concentrations of DMC (10?C150 ??M) significantly decreased the proliferation of A-375 cells. VPA and DMC also induced the synthesis of melanin and the formation of dendrite and star-shaped cells. Tyrosinase gene expression and tyrosinase activity significantly increased in response to VPA treatment. Pyrolysis with gas chromatography and mass spectrometry (Py-GC/MS) was used to investigate the structure of the isolated melanin. This showed that the quantitative and qualitative components of melanin degradation products are dependent on the type of applied melanogenesis inductor. Products derived from eumelanin were detected in the pyrolytic profile of melanin isolated from A-375 cells stimulated with DMC. Thermal degradation of melanin isolated from melanoma cells after exposure to VPA or a mixture of VPA and DMC revealed the additional presence of products derived from pheomelanin.  相似文献   

12.
The aim of this study was to identify a phenolic prodrug compound that is minimally metabolized by rat liver microsomes, but yet could form quinone reactive intermediates in melanoma cells as a result of its bioactivation by tyrosinase. In current work, we investigated 24 phenolic compounds for their metabolism by tyrosinase, rat liver microsomes and their toxicity towards murine B16-F0 and human SK-MEL-28 melanoma cells. A linear correlation was found between toxicities of phenolic analogs towards SK-MEL-28 and B16-F0 melanoma cells, suggesting similar mechanisms of toxicity in both cell lines. 4-HEB was identified as the lead compound. 4-HEB (IC50 48 h, 75 μM) showed selective toxicity towards five melanocytic melanoma cell lines SK-MEL-28, SK-MEL-5, MeWo, B16-F0 and B16-F10, which express functional tyrosinase, compared to four non-melanoma cells lines SW-620, Saos-2, PC3 and BJ cells and two amelanotic SK-MEL-24, C32 cells, which do not express functional tyrosinase. 4-HEB caused significant intracellular GSH depletion, ROS formation, and showed significantly less toxicity to tyrosinase specific shRNA transfected SK-MEL-28 cells. Our findings suggest that presence of a phenolic group in 4-HEB is critical for its selective toxicity towards melanoma cells.  相似文献   

13.
Lineage-specific differentiation programs are activated by epigenetic changes in chromatin structure. Melanin-producing melanocytes maintain a gene expression program ensuring appropriate enzymatic conversion of metabolites into the pigment, melanin, and transfer to surrounding cells. During neuroectodermal development, SMARCA4 (BRG1), the catalytic subunit of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes, is essential for lineage specification. SMARCA4 is also required for development of multipotent neural crest precursors into melanoblasts, which differentiate into pigment-producing melanocytes. In addition to the catalytic domain, SMARCA4 and several SWI/SNF subunits contain bromodomains which are amenable to pharmacological inhibition. We investigated the effects of pharmacological inhibitors of SWI/SNF bromodomains on melanocyte differentiation. Strikingly, treatment of murine melanoblasts and human neonatal epidermal melanocytes with selected bromodomain inhibitors abrogated melanin synthesis and visible pigmentation. Using functional genomics, iBRD9, a small molecule selective for the bromodomain of BRD9 was found to repress pigmentation-specific gene expression. Depletion of BRD9 confirmed a requirement for expression of pigmentation genes in the differentiation program from melanoblasts into pigmented melanocytes and in melanoma cells. Chromatin immunoprecipitation assays showed that iBRD9 disrupts the occupancy of BRD9 and the catalytic subunit SMARCA4 at melanocyte-specific loci. These data indicate that BRD9 promotes melanocyte pigmentation whereas pharmacological inhibition of BRD9 is repressive.  相似文献   

14.
15.
Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake.  相似文献   

16.
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases.  相似文献   

17.
Malignant melanoma displays a highly aggressive metastasis. Thus, early diagnosis of malignant melanoma is important for patient survival. We designed and synthesized a novel (68)Ga-labeled benzamide derivative that specifically binds to melanoma as demonstrated by its ability to bind to melanin. (68)Ga-SCN-DOTA-PCA was synthesized with a radiochemical yield of ~80% and a radiochemical purity of >97% by analytical HPLC. The in vitro binding of (68)Ga-SCN-DOTA-PCA to melanin and its cellular uptake demonstrated the selective uptake in melanin. In addition, the biodistribution and micro-PET imaging of (68)Ga-SCN-DOTA-PCA in B16F10 tumor models showed the specific accumulation in melanoma. These results suggest that (68)Ga-SCN-DOTA-PCA would be a promising agent for melanoma diagnosis.  相似文献   

18.
19.
20.
Nine cyclic diarylheptanoids, 1-9, including two new compounds, i.e., 9-oxoacerogenin A (8) and 9-O-β-D-glucopyranosylacerogenin K (9), along with three acyclic diarylheptanoids, 10-12, and four phenolic compounds, 13-16, were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K (17) and D-glucose. Two of the cyclic diarylheptanoids, acerogenin A (1) and (R)-acerogenin B (5), were converted to their ether and ester derivatives, 18-24 and 27-33, respectively, and to the dehydrated derivatives, 25, 26, 34, and 35. Upon evaluation of compounds 1-16 and 18-35 for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone (α-MSH), eight natural glycosides, i.e., six diarylheptanoid glycosides, 2-4, 6, 9, and 12, and two phenolic glycosides, 15 and 16, exhibited inhibitory activities with 24-61% reduction of melanin content at 100?μM concentration with no or almost no toxicity to the cells (88-106% of cell viability at 100?μM). In addition, when compounds 1-16 and 18-35 were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, 10 and 11, ten ether and ester derivatives, 18-22 and 27-31, and two dehydrated derivatives, 34 and 35, exhibited potent cytotoxicities against HL60 human leukemia cell line (IC(50) 8.1-19.3?μM), and five compounds, 10, 11, 20, 29, and 30, against CRL1579 human melanoma cell line (IC(50) 10.1-18.4?μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号