首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
大鼠中心体蛋白家族基因的克隆及其在睾丸中的表达特征   总被引:1,自引:0,他引:1  
centrin是进化上高度保守的中心体蛋白家族, 已从多种生物中克隆到其同源基因, 但基因文库中尚无大鼠centrin序列的报道. 采用RT-PCR从大鼠睾丸组织中克隆到centrin-1, -2和 -3 cDNA片段, 对其衍生的氨基酸序列进行同源性比较, 结果显示, 人、小鼠、大鼠中相应的centrin蛋白同源性很高. 采用半定量RT-PCR技术研究了它们在大鼠精子发生过程中的表达特征. 结果表明, centrin-1的表达具有睾丸组织和生精细胞特异性, 并呈现出发育阶段相关的规律, 它仅在减数分裂开始后转录, 其mRNA水平在圆形精子细胞中达到高峰. centrin-2和centrin-3在睾丸精原细胞中有高表达, 进入减数分裂后其mRNA水平迅速降低, 同时在一些体细胞中也有表达. 推测centrin-1可能在减数分裂或精子细胞变态分化过程中发挥作用, 而centrin-2, -3可能与有丝分裂有关.  相似文献   

2.
中心体是肿瘤细胞中重要的研究对象。起初研究人员就假设中心体的异常及随之而来的有丝分裂紊乱,是导致肿瘤发生的重要原因之一。中心体既有基本的复制机器,也有完善的扩增制动机制。在多数肿瘤细胞中都可以观察到中心体异常扩增的现象。因此,中心体异常扩增也成为肿瘤细胞的"标志"之一。总结了中心体相关研究的最新进展,并重点讨论了中心体与肿瘤发生之间的关系,为进一步了解中心体发挥功能的机制提供参考。  相似文献   

3.
中心体作为细胞微管组织中心,对于细胞的生理活动具有重要的调控作用.在G2期末和有丝分裂期开始阶段,复制之后的中心体需要向细胞核两端运动,到达形成双极纺锤体的位置.这一过程受到微管和微丝两个骨架系统的调控.在相关动力蛋白的驱动下,两种骨架相互配合,共同完成中心体的分离过程,从而保证细胞顺利进入有丝分裂期.本文分析和比较了两种骨架蛋门对下中心体分离过程中所发挥的作用.  相似文献   

4.
体细胞核移植与中心体遗传   总被引:1,自引:0,他引:1  
杜卫华  朱化彬  郝海生  王栋 《遗传》2008,30(8):960-966
体细胞克隆虽然在多种哺乳动物中成功获得后代, 但仍存在一系列的问题需要解决。克隆胚胎的发育能力由核移植后几小时内的细胞和分子过程决定, 包括染色体分离和纺锤体的重新组装。中心体的正常组成和分布能保证染色体分离的准确性及新生和出生后克隆动物发育过程中的基因组稳定性。文章在分析哺乳动物体细胞克隆存在的问题和简介中心体结构功能的基础上, 综述了中心体在配子和受精卵发育过程中的遗传机制, 同时阐述了体细胞克隆胚胎中心体及其相关蛋白的研究现状。  相似文献   

5.
用间接免疫荧光法以小鼠腹水癌细胞为底物从硬皮病病人的自家抗血清中筛选出几个抗中心体的抗血清。因为中心体是化学构分复杂的细胞结构,而自家抗体又是多克隆的,故本文只用其中一个抗中心体抗血清作进一步研究。为了定位其抗原,同时也采用了L929培养细胞为底物。发现这抗血清结合于微管,有丝分裂期的纺锤体,中心体以及其它一些核结构。同时也用此抗血清在细胞裂解液的免疫印迹膜上检出了分子时与微管蛋白相同的主要条带,  相似文献   

6.
第四军医大学唐都医院继医用直线加速器和头部、体部X刀之后,新引进的世界最先进的头部伽玛刀和体部伽玛刀,最近通过了国家卫生部和解放军总后卫生部组织的验收。专家们认为,唐都医院如此集中具有世界先进水平的大型放射治疗设备,可以满足各种脑部、体部肿瘤及其他病变患者的不同需要,已成为西部最大的放射治疗研究中心。  相似文献   

7.
贾小明  陈声明   《微生物学通报》1999,26(5):370-372
在特定条件下,自生固氮菌(Azt)tobaclersp.)的营养细胞会转变成一卵圆形或球形的休眠体,称为抱囊(Cyst)。‘l抱羹的形态结构固氮菌的抱囊为球形或卵圆形,大小为1.SX2.opm[‘],体积大约为营养细胞的一半,其结构在光学显微镜下至少可分为3部分:中心体(centalbody)、内壁层(inhne)和外壁层(exine)。Pope等l’]用钉红染色可见外壁层外还有荚膜.抱囊的中心体是收缩的细胞质部,往往内含数个折射的颗粒,为聚卜羟基丁酸盐(PHB)颗粒。紧绕着中心体的为细胞质膜,…  相似文献   

8.
中心体异常和肿瘤   总被引:4,自引:0,他引:4  
中心体是紧靠细胞核的小体积细胞器,由中心粒和中心粒外周基质(PCM)组成.中心体的蛋白质组成、形态、大小和位置随细胞周期不断发生变化.中心体复制过程与细胞核内其他事件相耦合,并与DNA复制一样,以半保留方式复制.现已发现了许多中心体蛋白及与中心体复制相关的蛋白激酶,调控着中心体复制的各个步骤.中心体复制还受p53,Rb,p21,Gadd45和Brca1/2等多个负性基因调节,中心体异常与基因组不稳定性存在相关性,并有可能与肿瘤发生过程相关.  相似文献   

9.
用间接免疫荧光法以小鼠腹水癌细胞为底物从硬皮病病人的自家抗血清中筛选出几个抗中心体的抗血清。因为中心体是化学构分复杂的细胞结构,而自家抗体又是多克隆的,故本文只用其中一个抗中心体抗血清作进一步研究。为了定位其抗原,同时也采用了L 929培养细胞为底物。发现这抗血清结合于微管,有丝分裂期的纺锤体,中心体以及其它一些核结构。同时也用此抗血清在细胞裂解液的免疫印迹膜上检出了分子量与微管蛋白相同的主要条带,此外还有几条较不明显的条带;后者肯定了间接免疫荧光的观察结果。  相似文献   

10.
周璐珈  陈洵 《生命的化学》2006,26(3):221-223
纺锤体极体作为酵母细胞的微管组织中心,在功能上等同于高等真核细胞的中心体,它在细胞周期中的准确复制是两极纺锤体组装和染色体正确分离的前提。纺锤体极体复制缺陷会导致异倍体和多倍体的形成,造成染色体不稳定性的发生。以酿酒酵母细胞为模型,研究纺锤体极体复制过程相关蛋白质的突变,有助于揭示酵母细胞中染色体不稳定性发生的分子机制,并为动物细胞中心体复制的研究提供良好的借鉴。  相似文献   

11.
The centrosomal protein ninein has been identified as a microtubules minus end capping, centriole position, and anchoring protein, but the true physiological function remains to be determined. In this report, using immunofluorescence analysis and GFP-fusions we show that coiled-coil II domain (CCII domain, 1303-2096) co-localized with gamma-tubulin and centrin at the centrosome. We further narrow down within 83 amino acids and classify a new centrosomal targeting signal. Interestingly, antibodies raised against CCII domain reveal that ninein protein declines from spindle poles during mitosis, but reaccumulates at centrosomes at the end of cell division. Moreover, the data also suggest that fragment 1783-1866 may be attributed to declined signal of ninein. In kinase assay, we show that CCII domain could readily be phosphorylated by AIK and PKA. Taken together, our results suggest that ninein protein contains two distinct subdomains which are required for targeting and regulating asymmetry centrosomes. Importantly, the decline of ninein during mitosis implies that this centrosomal protein may play a role to regulate the process of chromosome segregation without discrimination. The model we propose here will foster a clearer picture of how two asymmetric centrosomes could direct and ensure the correct segregation of chromosomes during the mitotic stage.  相似文献   

12.
Kim K  Lee S  Chang J  Rhee K 《Experimental cell research》2008,314(20):3692-3700
A proteomic study predicted that about one hundred kinds of proteins constitute a basic structure of the centrosome. Most of the core centrosomal proteins contain extensive coiled-coil domains, suggesting that the protein-protein interaction is a critical force for the core centrosome configuration. In the present study, we investigated a novel interaction between CEP135 and C-NAP1, two core centriolar proteins. Depletion of CEP135 caused a premature centrosome splitting. Reduction of the centrosomal C-NAP1 level was accompanied in a specific manner. Ectopic expression of the CEP135 mutant proteins also caused centrosome splitting in association with the reduction of the centrosomal C-NAP1 levels. Based on these results, we propose that CEP135 acts as a platform protein for C-NAP1 at the centriole.  相似文献   

13.
In most animals, fertilized eggs inherit one centrosome from a meiosis-II spindle of oocytes and another centrosome from the sperm. However, since first proposed by Boveri [Sitzungsber. Ges. Morph. Phys. Münch. 3 (1887) 151-164] at the turn of the last century, it has been believed that only the paternal (sperm) centrosome provides the division poles for mitosis in animal zygotes. This uniparental (paternal) inheritance of centrosomes is logically based on the premise that the maternal (egg) centrosome is lost before the onset of the first mitosis. For the processes of the selective loss of the maternal centrosome, three models have been proposed: One stresses the intrinsic factors within the centrosome itself; the other two emphasize external factors such as cytoplasmic conditions or the sperm centrosome. In the present study, we have examined the validity of one of the models in which the sperm centrosome overwhelms the maternal centrosomes. Because centrosomes cast off into both the first and the second polar bodies (PB) are known to retain the capacity for reproduction and cell-division pole formation, we observed the behavior of those PB centrosomes with reproductive capacity and the sperm centrosome in the same zygotic cytoplasm. We prepared two kinds of fertilized eggs that contain reproductive maternal centrosomes, (1) by micromanipulative transplantation of the PB centrosomes into fertilized eggs, and (2) by suppression of the PB extrusions of fertilized eggs with cytochalasin B. In both types of eggs, the PB centrosomes could double and form cell-division poles, indicating that they are not suppressed by the sperm centrosome, which in turn indicates that selective loss of the maternal centrosome is due to intrinsic factors within the centrosomes themselves.  相似文献   

14.
The mammalian centrosome and its functional significance   总被引:3,自引:2,他引:1  
Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome's functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome's role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome's significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease.  相似文献   

15.
A tentative classification of centrosome abnormalities in cancer   总被引:4,自引:0,他引:4  
Centrosome anomalies are detected in virtually all human cancers. They have been implicated in multipolar mitoses, chromosome missegregation, and genomic instability. Despite extensive studies on the type and frequency of centrosome anomalies, a causative relationship between centrosome aberrations and chromosomal instability has been difficult to establish. For example, centrosome amplification can be present without associated chromosomal instability. In addition, not all cells appear to be permissive for centrosome-related mitotic defects suggesting that cellular mechanisms that limit the harmful effects of spindle malformation on genome integrity may exist. This review proposes to classify centrosome abnormalities in tumor cells into three groups based on their relevance to genomic instability: primary centrosome overduplication, transient centrosome accumulation, and permanent centrosome accumulation. Whereas the first two categories are associated with an increased risk of chromosomal missegregation, the latter category may not contribute to the propagation of genomic instability. Therefore, centrosome anomalies should not per se be viewed as a universal cause of chromosomal instability, rather, they need to be assessed in the cellular context in which they occur.  相似文献   

16.
中心体作为主要微管组织中心在细胞周期事件中起着重要的作用。异常中心体可产生纺锤体异常,使染色体错误分离,引起染色体不稳定性和非整倍体的形成。中心体异常同染色体不稳定性一样是肿瘤细胞的一个普遍特征,并且可出现在肿瘤发生的早期阶段。中心体异常在肿瘤的发生发展演化过程中可能具有重要作用。现综述中心体的结构、功能、复制和调控,阐述肿瘤中中心体异常的表现和导致中心体扩增的可能机制及中心体扩增与染色体不稳定之间的相关性。  相似文献   

17.
Artificial activation and nuclear transfer in rabbit oocytes have been used in past years in an attempt to develop viable techniques for cloning in cattle. The procedures established in our laboratory, using the rabbit as a model, consistently lead to high rates of development to the blastocyst stage. However, the rate of embryos developing to term is considerably lower. In the present study, we undertook a detailed immunocytochemical study of the patterns of both microtubules and chromatin during the first cell cycle of electrical pulse-activated oocytes and of nuclear transfer embryos. Our goal was to investigate the responses of the cell to the different stimuli applied and to establish the sequence of events leading to first cleavage in the absence of normal fertilization. Our results show that, in both electrically activated oocytes and nuclear transfer embryos, although the initial development patterns are rather unusual, embryos become synchronized at the time of the formation of a pronuclear-like structure, and then organize metaphase spindles and cleave. These spindles consistently present small defects, suggesting that problems in the formation of the mitotic apparatus during the first cell cycle may have a long-term effect leading to embryo mortality. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

19.
本实验用微管的PAP免疫酶细胞化学方法,研究了培养的小儿包皮成纤维细胞及其分离的中心体在taxol的作用下对微管组装的影响。实验结果表明taxol对低温(4℃)和微管解聚药物的处理具有拮抗作用,它阻止微管解聚,对微管具有稳定作用,并观察到taxol可降低中心体对微管组装所需的管蛋白临界浓度,增强中心体对微管的组装能力。Taxol对细胞内微管的影响,主要表现在促使微管呈束状浓集化,并随处理时间的延长,这种浓集化表现愈益明显,导致破坏胞质CMTC的正常分布。由于taxol能使微管浓集化,抑制其解聚,使得细胞从G_2期进入M期后,微管不解聚,从而不能形成正常的纺锤体,胞质不分裂,最后导致细胞微核化。用秋水仙酰胺处理后再加taxol时,我们观察到细胞CMTC与正常未经处理的细胞CMTC比较,呈相反的分布现象,这可能与秋水仙酰胺促使中心体与细胞核分离和taxol增强中心体对微管的组装有关。  相似文献   

20.
The Nima-related kinase 2 (Nek2) has been implicated in the regulation of centrosome integrity and separation in several species and is a candidate for cell transformation. We now show that reduction of levels of the Drosophila Nek2 by RNAi in cultured cells leads to both dispersal of centrosomal antigens and formation of ectopic bodies of centrosomal antigens. Overexpression of the active DmNek2 kinase resulted in an increase in the number of mitotic cells with fragmented centrosomes. The DmNek2 protein kinase is associated with punctuate bodies within the centrosome consistent with its presence on centrioles. In addition, it is present at lower levels on the midbody during cytokinesis. Midbody association was enhanced following overexpression, whereupon the DmNek2 protein kinase also localised to the cell cortex becoming concentrated in the region of the cleavage furrow in late telophase. Many of such cells showed abnormalities in the organisation of anillin and actin in the cleavage furrow that was associated with formation of ectopic membrane protrusions between each daughter cell. We discuss potential roles for DmNek2 in maintaining centrosome integrity in mitosis, during cytokinesis, and consequently for the fidelity of chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号