首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we amid to evaluate the correlation between the change in the expressed levels of anti-GAD antibodies titers, oxidative stress markers, cytokines markers, and cognitive capacity in adolescents with mild stuttering. Eighty participants (60 male/20 female) with the age range of 10–18 years with moderate stutteringparticipated in this study. To assess the stuttering and cognitive function, stutteringseverity instrument (SSI-4; 4th edit.)and the LOTCA-7 scores assessment were applied respectively in all subjects. In addition, serum GAD antibodies, cytokines like TNF-α, CRP,and IL-6 withtotal antioxidant capacity and nitric oxide as oxidative stress markers were estimated using calorimetry and immunoassay techniques.The results showed that good cognitive capacity was reported in about 56.25 % of the study population (n = 45) with a 117.52 ± 6.3 mean LOTCA-7 score. However, abnormal cognitive function was identified in 43.75 % of the study population (n = 35); they were categorized into moderate (score 62–92, n = 35), and poor (score 31–62; n = 10). There were significant associations between cognitive capacity reported and all biomarkers. The expression of GAD antibodies is significantly associated with the degree of cognitive capacity among students with stuttering. Significant association with the reduction (P = 0.01) in LOTCA-7 score domains, particularly orientation, thinking operations, attention, and concentration among students with variable cognitive capacity compared to controls. In addition, the expressed higher GAD antibodies in students with moderate and poor cognitive capacity showed to be significantly correlated with both elevated concentrations of cytokines; TNF-α, CRP, and IL-6, and the reduction of TAC and nitric oxide (NO) respectively. This study concludes that abnormality of cognitive capacity showed to be associated with higher expression of GAD antibodies, cytokines, and oxidative stress in school students with moderate stuttering.  相似文献   

2.
Variability in the number of tandem repeats of the insulin gene (INS VNTR) is probably involved in the genetic regulation of insulin secretion. The aim of this study was to investigate the association of INS VNTR polymorphism with the presence of glutamic acid decarboxylase antibodies (GADA) and C-peptide levels in patients with the onset of diabetes after 35 years of age. We investigated 117 patients, median of age 63 (range 40-83) years, median of diabetes duration 8 (range 1-30) years; 31 GADA-positive and 86 GADA-negative subjects. INS VNTR polymorphism was typed indirectly using - 23HphI (T/A) polymorphism, which is in complete linkage disequilibrium with INS VNTR. The I/I, I/III and III/III genotypes were found in 22 (71 %), 8 (26 %), 1 (3 %) GADA-positive individuals and in 39 (45 %), 35 (41 %), 12 (14 %) GADA-negative individuals, respectively. The Class I allele and the genotype I/I were significantly associated with the presence of GADA (OR=2.72, CI 95 %=1.29-5.73 and OR=2.95, CI 95 %=1.22-7.13). The presence of Class III allele was significantly associated with a higher level of postprandial C-peptide in GADA-positive subjects, even when regarding the duration of diabetes. Our results of INS VNTR polymorphism in patients with the onset of diabetes after 35 years of age confirm the association of Class I INS VNTR with autoimmune diabetes and the protective effect of Class III INS VNTR on the insulin secretion in GADA-positive subjects.  相似文献   

3.
—GABA contents are significantly decreased in the caudate nucleus, putamen-globus pallidus, substantia nigra, and occipital cortex in autopsied brain from Huntington's chorea patients, as compared to values in the same regions from control subjects who have died without neurological disease. Homocarnosine levels are lower in choreic than in control brain, but only in the putamen-globus pallidus and the cerebellar cortex are the differences significant. Activity of the enzyme which synthesizes GABA, glutamic acid decarboxylase, is reduced in the brains of some choreic patients, but may be equally low in brain of control subjects, even though the latter exhibit normal brain GABA content. Low glutamic acid decarboxylase activity in autopsied human brain is not uniquely characteristic of Huntington's chorea. No evidence was found in this study for an inhibitor of glutamic acid decarboxylase in choreic brain, nor for the presence of an isoenzyme with decreased affinity for glutamate. GABA aminotransferase, the enzyme which degrades GABA, was equally active in control and choreic brain; therefore, increased activity of this enzyme cannot account for the low brain GABA levels in Huntington's chorea.  相似文献   

4.
We report the clinical, biochemical, and molecular genetic findings in a family with an unusual mitochondrial disease phenotype harboring a novel mtDNA tRNA glutamic acid mutation at position 14709. The proband and his sister presented with congenital myopathy and mental retardation and subsequently developed cerebellar ataxia. Other family members had either adult-onset diabetes mellitus with muscle weakness or adult-onset diabetes mellitus alone. Ragged-red and cytochrome c oxidase (COX)-negative fibers were present in muscle biopsies. Biochemical studies of muscle mitochondria showed reduced complex I and IV activities. The mtDNA mutation was heteroplasmic in blood and muscle in all matrilineal relatives analyzed. Primary myoblast, but not fibroblast, cultures containing high proportions of mutant mtDNA exhibited impaired mitochondrial translation. These observations indicate that mtDNA tRNA point mutations should be considered in the differential diagnosis of congenital myopathy. In addition they illustrate the diversity of phenotypes associated with this mutation in the same family and further highlight the association between mtDNA mutations and diabetes mellitus.  相似文献   

5.
BACKGROUND: Insulin (1) and glutamic acid decarboxylase (GAD) (2) are both autoantigens in insulin-dependent diabetes mellitus (IDDM), but no molecular mechanism has been proposed for their association. We have identified a 13 amino acid peptide of proinsulin (amino acids 24-36) that bears marked similarity to a peptide of GAD65 (amino acids 506-518) (G. Rudy, unpublished). In order to test the hypothesis that this region of similarity is implicated in the pathogenesis of IDDM, we assayed T cell reactivity to these two peptides in subjects at risk for IDDM. MATERIALS AND METHODS: Subjects at risk for IDDM were islet cell antibody (ICA)-positive, first degree relatives of people with insulin-dependent diabetes. Peripheral blood mononuclear cells from 10 pairs of at-risk and HLA-DR matched control subjects were tested in an in vitro proliferation assay. RESULTS: Reactivity to both proinsulin and GAD peptides was significantly greater among at-risk subjects than controls (proinsulin; p < 0.008; GAD; p < 0.018). In contrast to reactivity to the GAD peptide, reactivity to the proinsulin peptide was almost entirely confined to the at-risk subjects. CONCLUSIONS: This is the first demonstration of T cell reactivity to a proinsulin-specific peptide. In addition, it is the first example of reactivity to a minimal peptide region shared between two human autoimmune disease-associated self antigens. Mimicry between these similar peptides may provide a molecular basis for the conjoint autoantigenicity of proinsulin and GAD in IDDM.  相似文献   

6.
We have reported previously that nonobese diabetic (NOD) fetal pancreas organ cultures lose the ability to produce insulin when maintained in contact with NOD fetal thymus organ cultures (FTOC). Initial studies indicated that exposure to glutamic acid decarboxylase (GAD65) peptides in utero resulted in delay or transient protection from insulin-dependent diabetes mellitus (IDDM) in NOD mice. We also found that exposure of young adult NOD mice to the same peptides could result in acceleration of the disease. To more closely examine the effects of early and late exposure to diabetogenic Ags on T cells, we applied peptides derived from GAD65 (GAD AA 246-266, 509-528, and 524-543), to our "in vitro IDDM" (ivIDDM) model. T cells derived from NOD FTOC primed during the latter stages of organ culture, when mature T cell phenotypes are present, had the ability to proliferate to GAD peptides. ivIDDM was exacerbated under these conditions, suggesting that GAD responsiveness correlates with the ivIDDM phenotype, and parallels the acceleration of IDDM we had seen in young adult NOD mice. When GAD peptides were present during the initiation of FTOC, GAD proliferative responses were inhibited, and ivIDDM was reduced. This result suggests that tolerance to GAD peptides may reduce the production of diabetogenic T cells or their capacity to respond, as suggested by the in utero therapies studied in NOD mice.  相似文献   

7.
We previously demonstrated that administration of plasmid DNAs (pDNAs) encoding IL-4 and a fragment of glutamic acid decarboxylase 65 (GAD65) fused to IgGFc induces GAD65-specific Th2 cells and prevents insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. To assess the general applicability of pDNA vaccination to mediate Ag-specific immune deviation, we examined the immunotherapeutic efficacy of recombinants encoding murine insulin A and B chains fused to IgGFc. Insulin was chosen based on studies demonstrating that administration of insulin or insulin B chain by a variety of strategies prevents IDDM in NOD mice. Surprisingly, young NOD mice receiving i.m. injections of pDNA encoding insulin B chain-IgGFc with or without IL-4 exhibited an accelerated progression of insulitis and developed early diabetes. Exacerbation of IDDM correlated with an increased frequency of IFN-gamma-secreting CD4(+) and CD8(+) T cells in response to insulin B chain-specific peptides compared with untreated mice. In contrast, treatment with pDNAs encoding insulin A chain-IgGFc and IL-4 elicited a low frequency of IL-4-secreting Th cells and had no effect on the progression of IDDM. Vaccination with pDNAs encoding GAD65-IgGFc and IL-4, however, prevented IDDM. These results demonstrate that insulin- and GAD65-specific T cell reactivity induced by pDNA vaccination has distinct effects on the progression of IDDM.  相似文献   

8.
Peptide-based immunotherapy is one strategy by which to selectively suppress the T cell-mediated destruction of beta cells and treat insulin-dependent diabetes mellitus (IDDM). Here, we investigated whether a panel of T cell epitopes derived from the beta cell autoantigen glutamic acid decarboxylase 65 (GAD65) differ in their capacity to induce Th2 cell function in nonobese diabetic (NOD) mice and in turn prevent overt IDDM at different preclinical stages of disease development. The panel consists of GAD65-specific peptides spanning aa 217-236 (p217), 247-265 (p247), 290-309 (p290), and 524-543 (p524). Our studies revealed that all of the peptides effectively prevented insulitis and diabetes when administered to NOD mice before the onset of insulitis. In contrast, only a mixture of p217 and p290 prevented progression of insulitis and overt IDDM in NOD mice exhibiting extensive beta cell autoimmunity. Immunization with the GAD65-specific peptides did not block IDDM development in NOD mice deficient in IL-4 expression. These findings demonstrate that GAD65-specific peptide immunotherapy effectively suppresses progression to overt IDDM, requires the production of IL-4, and is dependent on the epitope targeted and the extent of preexisting beta cell autoimmunity in the recipient.  相似文献   

9.
Several aryl and heteroaryl hydrazides were synthesized and evaluated for their inhibitory effects on glutamic acid decarboxylase (GAD), GABA-alpha-oxoglutarate aminotransferase (GABA-T), and monoamine oxidase (MAO) enzyme systems in chick brain 24 h after their intramuscular administration (0.75 mmol/kg). All compounds produced a reduction in GAD, GABA-T, and MAO activity. Structure-activity relationships indicated that the ring structure had a greater influence on the degree of GAD and GABA-T inhibition than did the N'-terminal group. In contrast, structural requirements for MAO inhibition were much more restrictive. The intramuscular administration of benzoic acid hydrazide to chicks 24 h prior to their being exposed to oxygen at high pressure provided significant protection against the onset of the hyperbaric oxygen-induced seizures.  相似文献   

10.
We aimed to test the hypothesis that gluten might be associated with the development of islet cell autoimmunity. A random sample of 200 persons (87 males, mean age 42.4 years) from Estonia including one patient with type I diabetes mellitus was studied. IgG-type glutamic acid decarboxylase (GAD65) antibodies were determined using radioligand-binding assay and IgG/IgA-type gliadin antibodies (AGA) by enzyme-linked immunosorbent assay. Generic HLA-DRB1* alleles were analyzed using a polymerase chain reaction. Although our results revealed the highest GAD65Ab index and a high IgA-type AGA in a person with diabetes, no correlation between GAD65Ab and AGA values was revealed among the other 199 persons (p > 0.05). There were also no differences between test values among persons with and without different HLA-DRB1* alleles (p > 0.05). In the GAD65Ab assay, one person (0.5 %; 95 % CI: 0 - 1.5) out of 199 exceeded the 99(th) centile of the GAD65Ab index. In summary, the present study does not confirm the possibility that there is a relationship between the immune reactivity against GAD65 and gliadin, at least in persons without type I DM.  相似文献   

11.
GABA, a major inhibitory neurotransmitter of the brain, is also present at high concentration in pancreatic islets. Current evidence suggests that within islets GABA is secreted from beta-cells and regulates the function of mantle cells (alpha- and delta-cells). In the nervous system GABA is stored in, and secreted from, synaptic vesicles. The mechanism of GABA secretion from beta-cells remains to be elucidated. Recently the existence of synaptic-like microvesicles has been demonstrated in some peptide-secreting endocrine cells. The function of these vesicles is so far unknown. The proposed paracrine action of GABA in pancreatic islets makes beta-cells a useful model system to explore the possibility that synaptic-like microvesicles, like synaptic vesicles, are involved in the storage and release of non-peptide neurotransmitters. We report here the presence of synaptic-like microvesicles in beta-cells and in beta-cells. Some beta-cells in culture were found to extend neurite-like processes. When these were present, synaptic-like microvesicles were particularly concentrated in their distal portions. The GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), was found to be localized around synaptic-like microvesicles. This was similar to the localization of GAD around synaptic vesicles in GABA-secreting neurons. GABA immunoreactivity was found to be concentrated in regions of beta-cells which were enriched in synaptic-like microvesicles. These findings suggest that in beta-cells synaptic-like microvesicles are storage organelles for GABA and support the hypothesis that storage of non-peptide signal molecules destined for secretion might be a general feature of synaptic-like microvesicles of endocrine cells.  相似文献   

12.
The renal glutamic acid decarboxylase (GAD) differs from the brain and pancreatic enzyme by its strong binding to membranes that is not influenced by detergents. After centrifugation of freshly prepared homogenate of the rat renal cortex, only 10-15% of GAD activity was found in supernatants and 15-30% in pellets. The majority of the GAD activity was lost. The bound GAD was found in the pellet. A thermolabile activator was present in the supernatant, which was not lost on dialysis. Approximately 55% of the total GAD activity was solubilized in homogenates stored for 24 h at 4 degrees C without detergent, whereas in homogenates stored with Triton X-100, the solubilized GAD increased to 80%. This solubilization was decreased by inhibitors of thioproteases such as leupeptin, antipain and trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64). Solubilized GAD was applied to DEAE Toyopearl resin and the GAD activator was eluted with 35 mM Pi. GAD was eluted with 250 mM Pi. The effect of ATP on the activity of renal GAD was also different to its effect on brain GAD. ATP is a strong inhibitor of the brain enzyme at physiological concentrations. ATP (and Pi), together with chlorides (another brain GAD inhibitor), stabilize the renal GAD. However, renal GAD was inhibited by ATP in the presence of leupeptin in freshly prepared homogenates. Similarly, ATP inhibits solubilized GAD from homogenates stored without Triton X-100 for 24 h at 4 degrees C, but Pi retains its stabilizing effect in this preparation. A significant finding of the work presented here is the obligatory requirement of an endogenous activator for renal GAD activity. Whether this activator is an enzyme converting the inactive GAD to active enzyme (as hypothesized for brain GAD), or whether it is a protein affecting the activity of renal GAD by binding (as observed for GAD in some plants) remains to be established.  相似文献   

13.
14.
15.
16.
17.
Plant alpha dioxygenases (PADOX) convert fatty acids to 2-hydroperoxy products that are important in plant signaling pathways. The PADOX amino-terminal domain is distinct from that in other myeloperoxidase-family hemoproteins, and the positional specificity and prosthetic group of PADOX distinguish them from the non-heme iron plant lipoxygenases. The constraints of the PADOX active site on potential substrates are poorly understood and only limited structure-function and mechanistic information is available for these enzymes. We developed several bacterial and insect cell systems for expression of recombinant Arabidopsis thaliana PADOX1 and evaluated the enzyme's substrate and inhibitor profiles and explored the functional role of the amino-terminal domain. Substrate specificity studies gave the following relative oxygenase activity values: linolenate, 1.00; linoleate, 0.95; oleate, 0.84; palmitoleate, 0.69; myristate, 0.23; palmitate, 0.17; and gamma-linolenate, 0.16. Methyl esters of myristate, linoleate and linolenate were not oxygenated. 3-Thiamyristate was the only oxygenase substrate that produced pronounced enzyme self-inactivation during catalysis. 3,4-Dehydromyristate inactivated the oxygenase without appreciable oxygen consumption. Several compounds inhibited oxygenase activity, including catechol (K(i) approximately 90 microM), divalent zinc ion (K(i) approximately 50 microM), N,N,N',N'-tetramethyl-p-phenylenediamine (K(i) approximately 20 microM) and cyanide ion (K(i) approximately 5 microM). Zinc ion did not change the K(m) values for linoleate or oxygen, or the K(i) value for cyanide, indicating that zinc acts at a distinct site from the other compounds. Gel-filtration chromatography revealed considerable variation in oligomeric state of recombinant PADOX1 produced in the various expression systems, but oligomeric state was not correlated with activity. Deletion of the first eight or fourteen PADOX1 residues in a NuSA-PADOX1 fusion protein led to 13 and 83% decreases in activity, respectively, indicating the N-terminal region is important for normal catalytic activity.  相似文献   

18.
BACKGROUND: Thyroid carcinoma in childhood and adolescence is uncommon and because of the slow progression of disease the standard treatment is controversial. The aim of this study was to perform a retrospective analysis of treatment results for differentiated thyroid carcinoma in this age group treated in our clinic. MATERIALS AND METHODS: From August 1988 to February 2001, 15 patients between the ages of 8 and 21 years (average 16.8) were treated for differentiated thyroid carcinoma at Akdeniz University Medical School Departments of General and Pediatric Surgery. The patients included 10 (67%) females and 5 (33%) males. None of the patients had a previous positive history of head and neck irradiation. All patients, except 2, were euthyroid at the time of diagnosis. RESULTS: Nine of the patients underwent total thyroidectomy and in 6 cases subtotal thyroidectomy was performed. There were multiple lymph node metastases in 4 (27%) patients and (various forms of) cervical lymph node dissections were performed in these patients. In addition, 2 children (13%) showed pulmonary metastasis. The incidence of surgical complications was 20% (1 permanent, 1 transient hypoparathyroidism and 1 permanent laryngeal nerve injury). Histological examinations revealed the following: papillary carcinoma in 9 (60%), follicular carcinoma in 5 (33%) patients, and Hurthle cell carcinoma in 1 (7%) patient. Postoperative radioiodine ablation was also added to treatment in 10 (67%) of the patients and all patients received L-thyroxine in suppressive doses. After a median follow-up period of 57 months (range 5-149), all patients are alive and disease-free. CONCLUSUION: Our observations suggest that although most children and adolescents with differentiated thyroid carcinoma are seen with more extensive disease than adults, a total or subtotal thyroidectomy with an appropriate lymph node dissection followed by ablative radioiodine treatment carries a more favorable prognosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号