首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary. Background. Perinatal asphyxia is a frequent cause of neurological handicap with no known therapy. However, hypothermic therapy has recently attracted attention owing to its neuroprotective property in brain of immature organisms. Objectives. Hypothermia appears to be promising in reversing the immediate effect of perinatal asphyxia, but data on long-term neuroprotection is still lacking. We therefore intended to test the long-term effect of moderate and profound hypothermia on brain morphology and functions using a well established rat model of perinatal asphyxia. Methods. Rat pups delivered by caesarean section were placed into a water bath, still in patent membranes, at 37 °C and variable hypothermic conditions to induce asphyxia and thereafter given to surrogate mothers. Examinations were performed at the age of three months, consisting of a battery of motor, behavioural, cognition and reflex tests including rota-rod, Morris water maze, multiple T-maze, elevated plus maze and open field studies. Morphological alterations were evaluated by Nissl staining of brain areas known to be hypoxia sensitive. Neurotransmission system markers, including tyrosine hydroxylase, vesicular monoamine transporter, vesicular acetylcholine transporter and excitatory amino acid carrier1 were analyzed by immunohistochemistry. Results. Survival increased with hypothermia. The Nissl stain revealed neuronal loss in hippocampus and hypothalamus of normothermic asphyxiated group (20/37) compared to controls (0/37), but no neuroprotective patterns emerged from hypothermia. An overall inconsistent protection of the neural systems was noted by variable periods of hypothermia. Motor function was significantly impaired in 20/37 as compared to 0/37. In the Morris water maze and multiple T-maze, results were comparable between the groups. In the elevated plus maze, time spent in the closed arm was reduced and in the open field, vertical behaviour was altered in the 20/37 group with horizontal motor behaviour being unaffected. Hypothermia reversed all abnormalities seen in 20/37, with short-term moderate and profound hypothermia being superior to long-term hypothermia. Conclusion. Hypothermia not only significantly increased survival, but also resulted in unimpaired motor as well as improved cognitive functions. Those findings are in contrast to altered brain morphology. As neuronal loss was present in various brain regions, we conclude that deficits may be compensated in the maturing animal. Intrahypoxic hypothermia was able to protect the rat from the devastating effect of perinatal asphyxia not in morphological, but in functional terms. The first and third authors have contributed equally to this work.  相似文献   

2.
Summary. We have investigated the idea that nicotinamide, a non-selective inhibitor of the sentinel enzyme Poly(ADP-ribose) polymerase-I (PARP-1), provides neuroprotection against the long-term neurological changes induced by perinatal asphyxia. Perinatal asphyxia was induced in vivo by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath for 20 min. Sibling caesarean-delivered pups were used as controls. The effect of perinatal asphyxia on neurocircuitry development was studied in vitro with organotypic cultures from substantia nigra, neostriatum and neocortex, platted on a coverslip 3 days after birth. After approximately one month in vitro (DIV 25), the cultures were treated for immunocytochemistry to characterise neuronal phenotype with markers against the N-methyl-D-aspartate receptor subunit 1 (NR1), the dopamine pacemaker enzyme tyrosine hydroxylase (TH), and nitric oxide synthase (NOS), the enzyme regulating the bioavailability of NO. Nicotinamide (0.8 mmol/kg, i.p.) or saline was administered to asphyctic and caesarean-delivered pups 24, 48 and 72 h after birth. It was found that nicotinamide treatment prevented the effect of perinatal asphyxia on several neuronal parameters, including TH- and NOS-positive neurite atrophy and NOS-positive neuronal loss; supporting the idea that nicotinamide constitutes a therapeutic alternative for the effects produced by sustained energy-failure conditions, as occurring during perinatal asphyxia.  相似文献   

3.
Summary. The effect of perinatal asphyxia on brain development was studied with organotypic cultures from substantia nigra, neostriatum and neocortex. Asphyxia was induced by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath for 20min. Following asphyxia, the pups were nursed by a surrogate dam and sacrificed after three days for preparing organotypic cultures. Non-asphyxiated caesarean-delivered pups were used as controls. Morphological features and cell viability were recorded during in vitro development. At day in vitro (DIV) 24, the cultures were treated for immunocytochemistry using antibodies against the N-methyl-D-aspartate receptor subunit 1 (NR1) and tyrosine hydroxylase (TH).While in vitro survival was similar in cultures from both asphyxiated and control animals, differences were observed when the neuronal phenotype was assessed. Compared to controls, the total number of NR1-positive neurons in substantia nigra, as well as the number of secondary to higher level branching of TH-positive neurites from asphyxiated pups were decreased, illustrating the vulnerability of the dopaminergic systems to perinatal asphyxia.  相似文献   

4.
The present work investigated the behavioral effects of a moderate exposure (1 h per day for 5 consecutive days) to a static magnetic field (SMF, 128 mT) in male rats. SMF effects were evaluated in two sets of control and SMF-exposed rats. One set of animals was used for evaluation of SMF potential effects on emotional behaviors in the elevated plus maze and in the open field. The other set of animals was tested for learning and memory abilities in different procedures of the Morris water maze task. We found no significant difference between control and SMF-exposed rats in anxiety tests. However, the ratio of open arms time in the plus maze was reduced by half in SMF-exposed rats. In the Morris water maze, SMF-exposed rats were partially impaired during the initial learning task as well as in the retention task at one week. We conclude that static magnetic field exposure altered emotional behaviors in the plus maze and led to cognitive impairments, or at least to substantial attention disorders, in the Morris water maze.  相似文献   

5.
Summary. Epilepsy research relies heavily on animal models that mimic some, or all, of the clinical symptoms observed. We have previously described a new developmental rat model of epilepsy that demonstrates both behavioural seizures and changes in hippocampal morphology. In the current study we investigated whether these rats also show changes in cognitive performance as measured using the Morris water maze task, and emotionality as measured using the Elevated plus maze task. In the water maze, significant differences between male and female rats were found in several performance variables regardless of treatment. In addition, female but not male rats, treated neonatally with domoic acid had significant impairments in learning new platform locations in the water maze. In the elevated plus maze, a significant proportion of female rats spent more time in the open arm of the maze following prior exposure to the maze whereas this effect was not seen in male rats. We conclude that perinatal treatment with low doses of domoic acid results in significant gender-based changes in cognition and emotionality in adult rats.  相似文献   

6.
Perinatal asphyxia remains a major cause of acute mortality and of permanent neurodevelopmental disability in infants and children. However, the pathophysiologic features of hypoxic-ischemic encephalopathy are still incompletely understood. Animal studies have been focussing on grey matter pathology but information on white matter lesions is limited. The aim of the study was to investigate white matter lesions after three months following graded perinatal asphyxia in the rat using a well-documented, reproducible, clinically relevant and simple animal model of perinatal asphyxia. Brains of rat pups (n=10 per group) exposed to asphyctic periods of 10 and 20 minutes were examined histologically and compared to normoxic brain using Kluever-Barrera myelin staining, immunohistochemically with antibodies against myelin basic protein, 2',3'-cyclic-nucleotide'-phosphodiesterase as markers for myelination, antibodies against neurofilaments for the evaluation of axonal density and antibodies against glial fibrillary acidic protein as a marker for astrocytic gliosis. Morphometry three months after perinatal asphyxia showed significant reduction of corpus callosum in asphyctic brains. Patchy myelination deficits were found in hippocampal fimbriae and cerebellum, lobulus L 8, accompanied by reduced axonal density. Hypothalamus and striatum did not show any myelination deficit. Up to now only short term effects of perinatal asphyxia on myelination have been reported and this communication reveals long-term myelination deficit in three brain regions after three months following perinatal asphyxia. As myelination deficit was regularly accompanied by reduction of neurofilament immunoreactivity, we suggest that white matter lesions are paralleling grey matter damage, a subject still controversial in pathophysiology of brain damage in perinatal asphyxia.  相似文献   

7.
Human prenatal ethanol exposure that occurs during a period of increased synaptogenesis known as the 'brain growth spurt' has been associated with significant impairments in attention, learning and memory. Recent studies have shown that administration of ethanol to infant rats during the synaptogenesis period (first 2 weeks after birth) triggers extensive apoptotic neurodegeneration throughout many regions of the developing brain and results in cognitive dysfunctions as the animal matures. The present study was designed with an aim to investigate the effect of resveratrol, a polyphenolic phytoalexin (trans-3,5,4-trihydroxy stilbene) present in red wine on alcohol-induced cognitive deficits and neuronal apoptosis in rat pups postnatally exposed to ethanol. Pups were administered ethanol (5 g/kg, 12% v/v) by intragastric intubation on postnatal days 7, 8, and 9. Ethanol-exposed pups showed impaired memory performance in both Morris water maze elevated plus maze task recorded by using computer tracking with EthoVision software. Behavioral deficit in ethanol-exposed pups was associated with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokine (TNF-α, IL-1β and TGF-β), nuclear factor kappa beta and caspase 3 levels in both cerebral cortex and hippocampus. Chronic treatment with resveratrol (10 and 20 mg/kg) significantly attenuated all the behavioral, biochemical and molecular changes in different brain regions of ethanol administered pups. The major finding of the study is that resveratrol blocks activation of nuclear factor kappa beta pathway and apoptotic signaling and prevents cognitive deficits in rats postnatally exposed to ethanol.  相似文献   

8.
Walf AA  Frye CA 《Nature protocols》2007,2(2):322-328
The elevated plus maze is a widely used behavioral assay for rodents and it has been validated to assess the anti-anxiety effects of pharmacological agents and steroid hormones, and to define brain regions and mechanisms underlying anxiety-related behavior. Briefly, rats or mice are placed at the junction of the four arms of the maze, facing an open arm, and entries/duration in each arm are recorded by a video-tracking system and observer simultaneously for 5 min. Other ethological parameters (i.e., rears, head dips and stretched-attend postures) can also be observed. An increase in open arm activity (duration and/or entries) reflects anti-anxiety behavior. In our laboratory, rats or mice are exposed to the plus maze on one occasion; thus, results can be obtained in 5 min per rodent.  相似文献   

9.
6-Hydroxydopamine (75 mkg), producing selective degeneration of dopaminergic neurons in the brain, was injected intraamniotically to every rat fetus on 13th or 17th day of mother pregnancy. The other experiment was performed, when 6-hydroxydopamine administered i.p. to newborn rats on 4th or 10th day of life. All rats were growing, and several dopamine-dependent behaviors were investigated in adult animals: open field, rotation behavior, anxiety in elevated plus maze, conditioned placed preference, differentiation of novel and known alleys of Y-maze, aggressive behavior in intruder-resident test, selfs-stimulation of lateral hypothalamus. Prenatal administration of 6-hydroxydopamine initiated rotations and stereotypy, decreased anxiety in elevated maze, reduced reinforcing properties of amphetamine in place preference test, disturbed differentiation of novel and known alley in Y-maze, high aggression and decreased self-stimulation in less degree that postnatal injection of neurotoxin. Therefore, the early postnatal period is more sensitive to neurotoxin action than prenatal period of development. This phenomenon is connected with critical periods of development of dopaminergic system in ontogeny.  相似文献   

10.
Energy metabolism in graded perinatal asphyxia of the rat   总被引:7,自引:0,他引:7  
Although information on energy metabolism during hypoxemic-ischemic states is abundant, data on perinatal asphyxia (PA) are limited. As results from hypoxia-ischemia cannot be directly extrapolated to PA, a clinical entity characterized by acidosis, hypoxemia and hypercapnia, we decided to use a rat model of graded PA during delivery. Cesarean section was performed at the 21st day of gestation and the pups, still in the uterus horns, were asphyxiated from 0 to 20 minutes. In this model survival decreases with the length of asphyxia. Early changes of energy-rich phosphates in brain, heart and kidney were determined by HPLC. ATP and phosphocreatine gradually decreased with the length of asphyxia, with highest ATP depletion rate occurring in the kidney. ATP: brain 1.39 +/- 0.71 (0 min) to 0.06 microM/g wwt (20 min); heart 4.73 +/- 0.34 (0 min) to 1.08 +/- 0.47 (20 min); kidney 1.62 +/- 0.11 (0 min) to 0.02 +/- 0.02 (20 min). Phosphocreatine: brain 1.65 +/- 0.68 (0 min) to 0.51 +/- 0.45 microM/g (20 min); heart 6.98 +/- 0.38 (0 min) to 6.17 +/- 1.07 (20 min); kidney 8.23 +/- 0.86 (0 min) to 3.76 +/- 0.54 (20 min). We present data on energy derangement in a rat model of PA, closely resembling the clinical situation, showing that energy depletion precedes cell damage and death.  相似文献   

11.
Effects of asphyxia at birth on postnatal glucose regulation in the rat   总被引:1,自引:0,他引:1  
We have characterized the effect of a period of asphyxia at birth, followed by recovery, upon newborn rats. Asphyxiated pups were subjected to 3 to 5% (v/v) inspired oxygen during the first 20 min of life and then maintained in room air for 6 h. Control pups were maintained in room air throughout the 6-h period. Hypoxia produced severe asphyxia as reflected by a pH of 6.76 +/- 0.05, PaCO2 of 87 +/- 3 mm Hg and PaO2 of 15.4 +/- 4 mm Hg, and by a greatly increased blood lactate/pyruvate ratio. Plasma catecholamine concentrations in asphyxiated pups were elevated (epinephrine 13,866 +/- 250 pg/ml, norepinephrine 9611 +/- 1813 pg/ml) compared to control animals (epinephrine 973 +/- 234 pg/ml, norepinephrine 774 +/- 133 pg/ml) at 20 min. Asphyxia initially increased plasma glucose concentration, and then with recovery it fell below controls. Hepatic glycogen stores did not differ between asphyxiated and control pups. Plasma insulin concentrations remained elevated during asphyxia and the usual neonatal surge of plasma glucagon was significantly delayed. Neonatal asphyxia increases catecholamines, causes lactic acidemia, and alters insulin and glucagon levels. The interactions between these variables alters the normal pattern of glucose availability during the neonatal period.  相似文献   

12.
Cannabis is the most widely used illicit drug in the world. Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component of cannabis and its effects have been well-studied. However, cannabis contains many other cannabinoids that affect brain function. Therefore, these studies investigated the effect of cannabis smoke exposure on locomotor activity, rearing, anxiety-like behavior, and the development of dependence in rats. It was also investigated if cannabis smoke exposure leads to tolerance to the locomotor-suppressant effects of the endogenous cannabinoid anandamide. Cannabis smoke was generated by burning 5.7% Δ9-THC cannabis cigarettes in a smoking machine. The effect of cannabis smoke on the behavior of rats in a small and large open field and an elevated plus maze was evaluated. Cannabis smoke exposure induced a brief increase in locomotor activity followed by a prolonged decrease in locomotor activity and rearing in the 30-min small open field test. The cannabinoid receptor type 1 (CB1) receptor antagonist rimonabant increased locomotor activity and prevented the smoke-induced decrease in rearing. Smoke exposure also increased locomotor activity in the 5-min large open field test and the elevated plus maze test. The smoke exposed rats spent more time in the center zone of the large open field, which is indicative of a decrease in anxiety-like behavior. A high dose of anandamide decreased locomotor activity and rearing in the small open field and this was not prevented by rimonabant or pre-exposure to cannabis smoke. Serum Δ9-THC levels were 225 ng/ml after smoke exposure, which is similar to levels in humans after smoking cannabis. Exposure to cannabis smoke led to dependence as indicated by more rimonabant-precipitated somatic withdrawal signs in the cannabis smoke exposed rats than in the air-control rats. In conclusion, chronic cannabis smoke exposure in rats leads to clinically relevant Δ9-THC levels, dependence, and has a biphasic effect on locomotor activity.  相似文献   

13.
Ethanol-induced damage in the developing brain may result in cognitive impairment including deficits on neuropsychological tests of learning, memory and executive function, yet the underlying mechanisms remain elusive. In the present study we investigated the protective effect of tocotrienol against cognitive deficit, neuroinflammation and neuronal apoptosis in rat pups postnatally exposed to ethanol. Pups were administered ethanol (5g/kg, 12% v/v) by intragastric intubation on postnatal days 7, 8 and 9. Ethanol-exposed pups showed significant memory impairment in Morris water maze task as evident from increase in escape latency and total distance travelled to reach the hidden platform. Time spent in target quadrant, % total distance traversed in target quadrant and frequency of appearance in target quadrant was also significantly decreased in ethanol exposed pups in probe trial. Poor memory retention was exhibited by ethanol-exposed pups in elevated plus maze test also. Impaired cognition was associated with significantly enhanced acetylcholinesterase activity, increased neuroinflammation (oxidative-nitrosative stress, TNF-α, IL-1β and TGF-β1) and neuronal apoptosis (NF-κβ and Caspase-3) in different brain regions of ethanol-exposed pups. Co-administration with tocotrienol significantly ameliorated all the behavioral, biochemical and molecular alterations in the different brain regions of ethanol exposed pups. The current study thus demonstrates the possible involvement of NF-κβ mediated apoptotic signaling in cognitive deficits associated with postnatal ethanol exposure in rats and points to the potential of tocotrienol in the prevention of cognitive deficits in children with fetal alcohol spectrum disorders (FASDs).  相似文献   

14.
Deficiency in n-3 fatty acids has been accomplished through the use of an artificial rearing method in which ICR mouse pups were hand fed a deficient diet starting from the 2nd day of life. There was a 51% loss of total brain DHA in mice with an n-3 fatty acid-deficient diet relative to those with a diet sufficient in n-3 fatty acids. n-3 fatty acid adequate and deficient mice did not differ in terms of locomotor activity in the open field test or in anxiety-related behavior in the elevated plus maze. The n-3 fatty acid-deficient mice demonstrated impaired learning in the reference-memory version of the Barnes circular maze as they spent more time and made more errors in search of an escape tunnel. No difference in performance between all dietary groups in the cued and working memory version of the Barnes maze was observed. This indicated that motivational, motor and sensory factors did not contribute to the reference memory impairment.  相似文献   

15.
This paper reviews the role of the n-3 fatty acids in the regulation of cognitive functions, locomotor and exploratory activity and emotional status in rodents. There are disparate data on the performance of n-3 fatty acid deficient animals in the open field test and elevated plus maze. Results obtained in our laboratory indicated slower habituation to the open field in deficient mice, which affects total locomotor and exploratory parameters. We also observed no change in plus maze performance of deficient mice under low-stress but elevated anxiety under high-stress conditions. There is some evidence of elevated aggression and increased immobility time in the forced swimming test caused by n-3 fatty acid deficiency in rodents. Effects of n-3 fatty acid deficiency and supplementation on learning in several tests such as the Morris water maze, two odor olfactory discriminations, radial arm maze performance and avoidance tasks are reviewed in detail. There is some evidence of an enhanced vulnerability to stress of n-3 fatty acid deficient animals and this factor can influence performance in a variety of tests. Thus, behavioral tasks that involve a higher level of stress may better differentiate behavioral effects related to brain docosahexaenoic acid (DHA) status. It is suggested that a fruitful area for future investigations of functional alterations related to brain DHA status will be the delineation of the factors underlying changes in performance in behavioral tasks. The possible role of non-cognitive factors like emotionality and attention in the impaired performance of n-3 fatty acid deficient animals also requires further investigation.  相似文献   

16.
The gastrin-releasing peptide receptor (GRPR) has been implicated in the modulation of emotionally-motivated memory. In the present study, we investigated the role of the GRPR on non-emotional, non-associative memory, and anxiety. Adult male Wistar rats were given a systemic injection of the GRPR antagonist [D-Tpi6, Leu13 psi(CH2NH)-Leu14] bombesin (6–14) (RC-3095) (0.2, 1.0 or 5.0 mg/kg) 30 min before exposure to an open field or an elevated plus maze. Habituation to the open field was tested in a retention trial carried out 24 h after the first exposure to the open field. Rats given RC-3095 at the doses of 1.0 or 5.0 mg/kg showed impaired habituation. Animals treated with 5.0 mg/kg of RC-3095 spent significantly more time in the closed arms of the elevated plus maze. No effects of RC-3095 on locomotion or exploratory behavior were observed. The results implicate the GRPR in the regulation of non-emotional, non-associative memory as well as in anxiety.  相似文献   

17.
In the present work, we have used a rat animal model to study the early effects of intrauterine asphyxia occurring no later than 60 min following the cesarean-delivery procedure. Transitory hypertonia accompanied by altered posture was observed in asphyxiated pups, which also showed appreciably increased lactate values in plasma and hippocampal tissues. Despite this, there was no difference in terms of either cell viability or metabolic activities such as oxidation of lactate, glucose, and glycine in the hippocampus of those fetuses submitted to perinatal asphyxia with respect to normoxic animals. Moreover, a significant decrease in glutamate, but not GABA uptake was observed in the hippocampus of asphyctic pups. Since intense ATP signaling especially through P2X7 purinergic receptors can lead to excitotoxicity, a feature which initiates neurotransmission failure in experimental paradigms relevant to ischemia, here we assessed the expression level of the P2X7 receptor in the paradigm of perinatal asphyxia. A three-fold increase in P2X7 protein was transiently observed in hippocampus immediately following asphyxia. Nevertheless, further studies are needed to delineate whether the P2X7 receptor subtype is involved in the pathogenesis, contributing to ongoing brain injury after intrapartum asphyxia. In that case, new pharmacologic intervention strategies providing neuroprotection during the reperfusion phase of injury might be identified.  相似文献   

18.
Caloric restriction (CR) is argued to positively affect general health, longevity and the normally occurring age-related reduction of cognition. This issue is well examined, but most studies investigated the effect of short-term periods of CR. Herein, 4 weeks old female mice were fed caloric restricted for 4, 20 and especially for 74 weeks. CR mice received 60% of food eaten by their ad libitum (AL) fed littermates, and all age-matched groups were behaviorally analyzed. The motor coordination, which was tested by rotarod/accelerod, decreased age-related, but was not influenced by the different periods of CR. In contrast, the age-related impairment of spontaneous locomotor activity and anxiety, both being evaluated by open field and by elevated plus maze test, was found aggravated by a lifelong CR. Measurement of cognitive performance with morris water maze showed that the working memory decreased age-related in AL mice, while a lifelong CR caused a better cognitive performance and resulted in a significantly better spatial memory upon 74 weeks CR feeding. However, a late-onset CR feeding in 66 weeks old mice did not ameliorate the working memory. Therefore, a lifelong CR seems to be necessary to improve working memory.  相似文献   

19.
Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17β-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7 days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4 mg/kg), but not 17β-estradiol (0.09 mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17β-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice.  相似文献   

20.
The cytochrome P450 (CYP) isoform CYP2C11 is specifically expressed in the liver of adult male rats, and 5alpha-reductase is specifically expressed in the liver of the adult female rats. The sexually dimorphic expressions of these hepatic enzymes are regulated by the sex-dependent profiles of the circulating growth hormone (GH). However, it is not well known whether hormonal imprinting or activation factors in the neonatal brain influence the sexually dimorphic expression patterns of hepatic enzymes. We therefore examined the effect of perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on sex-dependent expressions of hepatic enzymes. Pregnant rats were treated with TCDD at a dose of 0, 200, or 800 ng/kg on gestation day 15, exposing the pups to the chemical. Although the expression of CYP2C11 protein in the livers of male pups on postnatal day (PND) 49 was significantly higher than that of the controls, but the 5alpha-reductase activities in the livers of female pups were not altered by exposure to TCDD. Focusing on perinatal periods, testosterone and estrogen levels significantly increased in the brain of male pups on PND 2. The results suggest that the alteration of testosterone and estrogen levels affect hormonal imprinting in the neonatal brain of male pups, and thus induces a change in the level of male-specific hepatic CYP2C11. We conclude that perinatal exposure to TCDD at low doses may change the sexual differentiation of the neonatal brain in male rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号