首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the reduced form of the enzyme p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, complexed with its substrate p-hydroxybenzoate, has been obtained by protein X-ray crystallography. Crystals of the reduced form were prepared by soaking crystals of the oxidized enzyme-substrate complex in deaerated mother liquor containing 300-400 mM NADPH. A rapid bleaching of the crystals indicated the reduction of the enzyme-bound FAD by NADPH. This was confirmed by single crystal spectroscopy. X-ray data to 2.3 A were collected on oscillation films using a rotating anode generator as an X-ray source. After data processing and reduction, restrained least squares refinement using the 1.9 A structure of the oxidized enzyme-substrate complex as a starting model, yielded a crystallographic R-factor of 14.8% for 11,394 reflections. The final model of the reduced complex contains 3,098 protein atoms, the FAD molecule, the substrate p-hydroxybenzoate and 322 solvent molecules. The structures of the oxidized and reduced forms of the enzyme-substrate complex were found to be very similar. The root-mean-square discrepancy for all atoms between both structures was 0.38 A. The flavin ring is almost completely planar in the final model, although it was allowed to bend or twist during refinement. The observed angle between the benzene and the pyrimidine ring is 2 degrees. This value should be compared with observed values of 10 degrees for the oxidized enzyme-substrate complex and 19 degrees for the enzyme-product complex. The position of the substrate is virtually unaltered with respect to its position in the oxidized enzyme. No trace of a bound NADP+ or NADPH molecule was found.  相似文献   

2.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.  相似文献   

3.
p-Hydroxybenzoate hydroxylase catalyzes the hydroxylation of an aromatic substrate and uses flavin as a cofactor. The reaction probably occurs via a flavin 4a-hydroperoxide intermediate. In this study the crystal structure of 4a,5-epoxyethano-3-methyl-4a,5-dihydrolumiflavin, an analogue of the flavin 4a-hydroperoxide intermediate, was fitted to the active site in the crystal structure of the p-hydroxybenzoate hydroxylase-3,4-dihydroxybenzoate complex. This model of an important catalytic intermediate fitted very well in the active site of p-hydroxybenzoate hydroxylase. The most striking result was that whereas with the normal flavin, the 0-4 of the flavin ring makes only poor hydrogen bonds with the protein, with the flavin 4a-hydroperoxide analogue, the same 0-4 makes strong hydrogen bonds with the NH groups of Gly-46 and Val-47. These two NH groups form a carbonyl oxygen binding pocket which has a geometry almost identical to the oxyanion hole found in several proteases. The possible consequences of this model for the reaction mechanism of p-hydroxybenzoate hydroxylase are discussed.  相似文献   

4.
p-Hydroxybenzoate hydroxylase (PHBH) is an NADPH-dependent enzyme. To locate the NADPH binding site, the enzyme was crystallized under anaerobic conditions in the presence of the substrate p-hydroxybenzoate, the coenzyme analogue adenosine 5-diphosphoribose (ADPR), and sodium dithionite. This yielded colorless crystals that were suitable for X-ray analysis. Diffraction data were collected up to 2.7-A resolution. A difference Fourier between data from these colorless crystals and data from yellow crystals of the enzyme-substrate complex showed that in the colorless crystals the flavin ring was absent. The adenosine 5'-diphosphate moiety, which is the common part between FAD and ADPR, was still present. After restrained least-squares refinement of the enzyme-substrate complex with the riboflavin omitted from the model, additional electron density appeared near the pyrophosphate, which indicated the presence of an ADPR molecule in the FAD binding site of PHBH. The complete ADPR molecule was fitted to the electron density, and subsequent least-squares refinement resulted in a final R factor of 16.8%. Replacement of bound FAD by ADPR was confirmed by equilibrium dialysis, where it was shown that ADPR can effectively remove FAD from the enzyme under mild conditions in 0.1 M potassium phosphate buffer, pH 8.0. The empty pocket left by the flavin ring is filled by solvent, leaving the architecture of the active site and the binding of the substrate largely unaffected.  相似文献   

5.
Acyl-CoA oxidase (ACO) catalyzes the first and rate-determining step of the peroxisomal beta-oxidation of fatty acids. The crystal structure of ACO-II, which is one of two forms of rat liver ACO (ACO-I and ACO-II), has been solved and refined to an R-factor of 20.6% at 2.2-A resolution. The enzyme is a homodimer, and the polypeptide chain of the subunit is folded into the N-terminal alpha-domain, beta-domain, and C-terminal alpha-domain. The X-ray analysis showed that the overall folding of ACO-II less C-terminal 221 residues is similar to that of medium-chain acyl-CoA dehydrogenase (MCAD). However, the N-terminal alpha- and beta-domains rotate by 13 with respect to the C-terminal alpha-domain compared with those in MCAD to give a long and large crevice that accommodates the cofactor FAD and the substrate acyl-CoA. FAD is bound to the crevice between the beta- and C-terminal domains with its adenosine diphosphate portion interacting extensively with the other subunit of the molecule. The flavin ring of FAD resides at the active site with its si-face attached to the beta-domain, and is surrounded by active-site residues in a mode similar to that found in MCAD. However, the residues have weak interactions with the flavin ring due to the loss of some of the important hydrogen bonds with the flavin ring found in MCAD. The catalytic residue Glu421 in the C-terminal alpha-domain seems to be too far away from the flavin ring to abstract the alpha-proton of the substrate acyl-CoA, suggesting that the C-terminal domain moves to close the active site upon substrate binding. The pyrimidine moiety of flavin is exposed to the solvent and can readily be attacked by molecular oxygen, while that in MCAD is protected from the solvent. The crevice for binding the fatty acyl chain is 28 A long and 6 A wide, large enough to accommodate the C23 acyl chain.  相似文献   

6.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

7.
In the crystal structure of native p-hydroxybenzoate hydroxylase, Ser212 is within hydrogen bonding distance (2.7 A) of one of the carboxylic oxygens of p-hydroxybenzoate. In this study, we have mutated residue 212 to alanine to study the importance of the serine hydrogen bond to enzyme function. Comparisons between mutant and wild type (WT) enzymes with the natural substrate p-hydroxybenzoate showed that this residue contributes to substrate binding. The dissociation constant for this substrate is 1 order of magnitude higher than that of WT, but the catalytic process is otherwise unchanged. When the alternate substrate, 2,4-dihydroxybenzoate, is used, two products are formed (2,3,4-trihydroxybenzoate and 2,4, 5-trihydroxybenzoate), which demonstrates that this substrate can be bound in two orientations. Kinetic studies provide evidence that the intermediate with a high extinction coefficient previously observed in the oxidative half-reaction of the WT enzyme with this substrate is composed of contributions from both the dienone form of the product and the C4a-hydroxyflavin. During the reduction of the enzyme-2,4-dihydroxybenzoate complex by NADPH with 2, 4-dihydroxybenzoate, a rapid transient increase in flavin absorbance is observed prior to hydride transfer from NADPH to FAD. This is direct evidence for movement of the flavin before reduction occurs.  相似文献   

8.
p-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor FAD by NADPH in response to binding p-hydroxybenzoate to the enzyme and reaction of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. Three different reactions, each with specific requirements, are achieved by moving the position of the isoalloxazine ring in the protein structure. In this paper, we examine the operation of protein conformational changes and the significance of charge-transfer absorption bands associated with the reduction of FAD by NADPH when the substrate analogue, 5-hydroxypicolinate, is bound to the enzyme. It was discovered that the enzyme with picolinate bound was reduced at a rate similar to that with p-hydroxybenzoate bound at high pH. However, there was a large effect of pH upon the rate of reduction in the presence of picolinate with a pK(a) of 7.4, identical to the pK(a) of picolinate bound to the enzyme. The intensity of charge-transfer bands observed between FAD and NADPH during the reduction process correlated with the rate of flavin reduction. We conclude that high rates of reduction of the enzyme require (a) the isoalloxazine of the flavin be held by the protein in a solvent-exposed position and (b) the movement of a loop of protein so that the pyridine ring of NADPH can move into position to form a complex with the isoalloxazine that is competent for hydride transfer and that is indicated by a strong charge-transfer interaction.  相似文献   

9.
H A Schreuder  W G Hol  J Drenth 《Biochemistry》1990,29(12):3101-3108
The flavoprotein p-hydroxybenzoate hydroxylase has been studied extensively by biochemical techniques by others and in our laboratory by X-ray crystallography. As a result of the latter investigations, well-refined crystal structures are known of the enzyme complexed (i) with its substrate p-hydroxybenzoate and (ii) with its reaction product 3,4-dihydroxybenzoate and (iii) the enzyme with reduced FAD. Knowledge of these structures and the availability of the three-dimensional structure of a model compound for the reactive flavin 4a-hydroperoxide intermediate has allowed a detailed analysis of the reaction with oxygen. In the model of this reaction intermediate, fitted to the active site of p-hydroxybenzoate hydroxylase, all possible positions of the distal oxygen were surveyed by rotating this oxygen about the single bond between the C4a and the proximal oxygen. It was found that the distal oxygen is free to sweep an arc of about 180 degrees in the active site. The flavin 4a-peroxide anion, which is formed after reaction of molecular oxygen with reduced FAD, might accept a proton from an active-site water molecule or from the hydroxyl group of the substrate. The position of the oxygen to be transferred with respect to the substrate appears to be almost ideal for nucleophilic attack of the substrate onto this oxygen. The oxygen is situated above the 3-position of the substrate where the substitution takes place, at an angle of about 60 degrees with the aromatic plane, allowing strong interactions with the pi electrons of the substrate. Polarization of the peroxide oxygen-oxygen bond by the enzyme may enhance the reactivity of flavin 4a-peroxide.  相似文献   

10.
Cholesterol oxidase (3 beta-hydroxysteroid oxidase, EC 1.1.3.6) is an FAD-dependent enzyme that carries out the oxidation and isomerization of steroids with a trans A : B ring junction. The crystal structure of the enzyme from Brevibacterium sterolicum has been determined using the method of isomorphous replacement and refined to 1.8 A resolution. The refined model includes 492 amino acid residues, the FAD prosthetic group and 453 solvent molecules. The crystallographic R-factor is 15.3% for all reflections between 10.0 A and 1.8 A resolution. The structure is made up of two domains: an FAD-binding domain and a steroid-binding domain. The FAD-binding domain consists of three non-continuous segments of sequence, including both the N terminus and the C terminus, and is made up of a six-stranded beta-sheet sandwiched between a four-stranded beta-sheet and three alpha-helices. The overall topology of this domain is very similar to other FAD-binding proteins. The steroid-binding domain consists of two non-continuous segments of sequence and contains a six-stranded antiparallel beta-sheet forming the "roof" of the active-site cavity. This large beta-sheet structure and the connections between the strands are topologically similar to the substrate-binding domain of the FAD-binding protein para-hydroxybenzoate hydroxylase. The active site lies at the interface of the two domains, in a large cavity filled with a well-ordered lattice of 13 solvent molecules. The flavin ring system of FAD lies on the "floor" of the cavity with N-5 of the ring system exposed. The ring system is twisted from a planar conformation by an angle of approximately 17 degrees, allowing hydrogen-bond interactions between the protein and the pyrimidine ring of FAD. The amino acid residues that line the active site are predominantly hydrophobic along the side of the cavity nearest the benzene ring of the flavin ring system, and are more hydrophilic on the opposite side near the pyrimidine ring. The cavity is buried inside the protein molecule, but three hydrophobic loops at the surface of the molecule show relatively high temperature factors, suggesting a flexible region that may form a possible path by which the substrate could enter the cavity. The active-site cavity contains one charged residue, Glu361, for which the side-chain electron density suggests a high degree of mobility for the side-chain. This residue is appropriately positioned to act as the proton acceptor in the proposed mechanism for the isomerization step.  相似文献   

11.
Hydrogen peroxide reacts with 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase to yield a long wavelength intermediate (lambda max = 360, 620 nm) which can be isolated in stable form on removal of excess H2O2. The blue flavin derivative slowly decays in a second peroxide-dependent reaction to yield a new flavin product lacking long wavelength absorbance (lambda max = 408, 472 nm). This final peroxide-modified enzyme binds p-hydroxybenzoate with a 10-fold lower affinity than does the native enzyme; furthermore, substrate binding leads to the inhibition of enzyme reduction by NADPH. Trichloroacetic acid treatment of the final peroxide-modified enzyme results in the quantitative conversion of the bound flavin to free FAD. However, gel filtration of the modified enzyme in guanidine hydrochloride at neutral pH leads to the co-elution of protein and modified flavin. The nondenatured peroxide product reacts rapidly with hydroxylamine to yield 2-NHOH-substituted FAD. These observations indicate that the secondary reaction of peroxide with the blue intermediate from 2-thio-FAD p-hydroxybenzoate hydroxylase results in the formation of an acid-labile covalent flavin-protein linkage within the enzyme active site, involving the flavin C-2 position.  相似文献   

12.
Structural and kinetic studies have revealed two flavin conformations in p-hydroxybenzoate hydroxylase (PHBH), the in-position and the out-position. Conversion between these two conformations is believed to be essential during catalysis. Although substrate hydroxylation occurs while the flavin in PHBH is in the in-conformation, the position of the flavin during reduction by NADPH is uncertain. To investigate the catalytic importance of the out-conformation of the flavin and to clarify the mechanism of flavin reduction in PHBH, we report quantitative structure-reactivity relationships (QSAR) using PHBH substituted separately with nine derivatives of FAD modified in the 8-position and four dihydronicotinamide analogues as reducing agents. The 8-position of the FAD isoalloxazine ring was chosen for modification because in PHBH it has minimal interactions with the protein and is accessible to solvent. The chemical sequence of events during catalysis by PHBH was not altered when using any of the modified flavins, and normal products were obtained. Although the rate of reduction of PHBH reconstituted with flavin derivatives is expected to be dependent on the redox potential of the flavin, no strict correlation was observed. Instead, the rate of reduction correlated with the kappa-substituent constant, which is based on size and hydrophobicity of the 8-substituent on the FAD. Substituents that sterically hinder attainment of the out-conformation decreased the rate of flavin reduction much more than expected on the basis of the redox potential of the flavin. The results of this QSAR analysis are consistent with the hypothesis that the flavin in PHBH must move to the out-conformation for proper formation of the charge-transfer complex between NADPH and FAD that is necessary for rapid flavin reduction.  相似文献   

13.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

14.
Crystals of the flavin-containing enzyme p-hydroxybenzoate hydroxylase (PHBHase) complexed with its reaction product were investigated in order to obtain insight into the catalytic cycle of this enzyme involving two substrates and two cofactors. PHBHase was crystallized initially with its substrate, p-hydroxybenzoate and the substrate was then converted into the product 3,4-dihydroxybenzoate by allowing the catalytic reaction to proceed in the crystals. In addition, crystals were soaked in mother liquor containing a high concentration of this product. Data up to 2.3 A (1 A = 0.1 nm) were collected by the oscillation method and the structure of the enzyme product complex was refined by alternate restrained least-squares procedures and model building by computer graphics techniques. A total of 273 solvent molecules could be located, four of them being presumably sulfate ions. The R-factor for 14,339 reflections between 6.0 A and 2.3 A is 19.3%. The 3-hydroxyl group of the product introduced by the enzyme is clearly visible in the electron density, showing unambiguously which carbon atom of the substrate is hydroxylated. A clear picture of the hydroxylation site is obtained. The plane of the product is rotated 21 degrees with respect to the plane of the substrate in the current model of enzyme-substrate complex. The 4-hydroxyl group of the product is hydrogen bonded to the hydroxyl group of Tyr201, its carboxyl group is interacting with the side-chains of Tyr222, Arg214 and Ser212, while the newly introduced 3-hydroxyl group makes a hydrogen bond with the backbone carbonyl oxygen of Pro293.  相似文献   

15.
Zheng Y  Dong J  Palfey BA  Carey PR 《Biochemistry》1999,38(51):16727-16732
X-ray crystallographic studies of several complexes involving FAD bound to p-hydroxybenzoate hydroxylase (PHBH) have revealed that the isoalloxazine ring system of FAD is capable of adopting in two positions on the protein. In one, the "in" form, the ring is surrounded by protein groups and has little contact with solvent; in the second, "out" form, the ring is largely solvent exposed. Using Raman difference spectroscopy, it has been possible to obtain Raman spectra for the flavin ring in both conformational states for different complexes in solution. The spectra consist of a rich assortment of isoalloxazine ring modes whose normal mode origin can be assigned by using density functional theory and ab initio calculations. Further insight into the sensitivity of these modes to changes in environment is provided by the Raman spectra of lumiflavin in the solid state, in DMSO and in aqueous solution. For the protein complexes, the Raman difference spectra of flavin bound to wt PHBH and wt PHBH plus substrate, p-hydroxybenzoate, provided examples of the "in" conformation. These data are compared to those for flavin bound to wt PHBH plus 2,4-dihydroxybenzoate, where X-ray analysis show that the flavin is "out". There are several spectral regions where characteristic differences exist for flavin in the "in" or "out" conformation, these occur near 1700, 1500, 1410, 1350, 1235, and 1145 cm(-)(1). These spectral features can be used as empirical marker bands to determine the populations of "in" and "out" for any complex of PHBH and to monitor changes in those populations with perturbations to the system, e.g., by changing temperature or pH. Thus, it will now be possible to determine the conformational state of the flavin in PHBH for those complexes that have resisted X-ray crystallographic analysis. Raman difference data are also presented for the Tyr222Phe mutant. The Raman data show that the isoalloxazine ring is predominantly "out" for Tyr222Phe. However, in the presence of the substrate p-hydroxybenzoate there is clear evidence from the Raman marker bands that a mixed population of "in" and "out" exists with the majority being in the "out" state. This is consistent with the conclusions drawn from crystallographic studies on this complex (Gatti, D. L., Palfey, B. A., Lah, M. S., Entsch, B., Massey, V., Ballou, D. P., and Ludwig, M. L. (1994) Science, 266, 110-114).  相似文献   

16.
The role of protein residues in activating the substrate in the reaction catalyzed by the flavoprotein p-hydroxybenzoate hydroxylase was studied. X-ray crystallography (Schreuder, H. A., Prick, P.A.J., Wieringa, R.K., Vriend, G., Wilson, K.S., Hol, W.G. J., and Drenth, J. (1989) J. Mol. Biol. 208, 679-696) indicates that Tyr-201 and Tyr-385 form a hydrogen bond network with the 4-OH of p-hydroxybenzoate. Therefore, site directed mutants were constructed, converting each of these tyrosines into phenylalanines. Spectral (visible and fluorescence) properties, reduction potentials, and binding constants are very similar to those of wild type, indicating that there are no major structural changes in the mutants. In the absence of substrate, the mutants and wild type exhibit similar pH-dependent changes in the FAD spectrum. However, the enzyme-substrate complex of Tyr-201----Phe lacks an ionization observed in both wild type and Tyr-385----Phe, which preferentially bind the phenolate form of substrates. Tyr-201----Phe shows no preference, indicating that Tyr-201 is required to ionize the substrate. The mutants have less than 6% the activity of the wild type enzyme. The effects on catalysis were studied by stopped flow techniques. Reduction of FAD by NADPH is slower by 10-fold in Tyr-201----Phe and 100-fold in Tyr-385----Phe. When the reduced Tyr-201----Phe-p-hydroxybenzoate complex reacts with oxygen, a long-lived flavin-C(4a)-hydroperoxide is observed, which slowly eliminates H2O2 with very little hydroxylation. Thus, the role of Tyr-201 is to activate the substrate by stabilizing the phenolate. Tyr-385----Phe reacts with oxygen to form 25% oxidized enzyme, and 75% flavin hydroperoxide, which successfully hydroxylates the substrate. This mutant also hydroxylates the product (3, 4-dihydroxybenzoate) to form gallic acid.  相似文献   

17.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyses a reaction in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the protein and isoalloxazine ring during catalysis. Earlier research showed that reduction of FAD occurs when the isoalloxazine of the FAD moves to the surface of the protein to allow hydride transfer from NADPH. This move is coordinated with protein rearrangements that are triggered by deprotonation of buried p-hydroxybenzoate through a H-bond network that leads to the surface of the protein. In this paper, we examine the involvement of this same H-bond network in the oxygen reactions-the initial formation of a flavin-C4a-hydroperoxide from the reaction between oxygen and reduced flavin, the electrophilic attack of the hydroperoxide upon the substrate to form product, and the elimination of water from the flavin-C4a-hydroxide to form oxidized enzyme in association with product release. These reactions were measured through absorbance and fluorescence changes in the FAD during the reactions. Results were collected over a range of pH for the reactions of wild-type enzyme and a series of mutant enzymes with the natural substrate and substrate analogues. We discovered that the rate of formation of the flavin hydroperoxide is not influenced by pH change, which indicates that the proton required for this reaction does not come from the H-bond network. The rate of the hydroxylation reaction increases with pH in a manner consistent with a pK(a) of 7.1. We conclude that the H-bond network abstracts the phenolic proton from p-hydroxybenzoate in the transition state of oxygen transfer. The rate of formation of oxidized enzyme increases with pH in a manner consistent with a pK(a) of 7.1, indicating the involvement of the H-bond network. We conclude that product deprotonation enhances the rate of a specific conformational change required for both product release and the elimination of water from C4a-OH-FAD.  相似文献   

18.
The flavoprotein p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was modified by several arginine-specific reagents. Modifications by 2,3-butanedione led to the loss of activity of the enzyme, but the binding of p-hydroxybenzoate and NADPH to the enzyme was little or not at all affected. However the formation of the enzyme-substrate complex of the modified enzyme was accompanied by an increase of the fluorescence of protein-bound FAD, in contrast to that of native enzyme which leads to quenching of the fluorescence. Enzyme modified by phenylglyoxal did not bind p-hydroxybenzoate nor NADPH. Quantification and protection experiments showed that two arginine residues are essential and a model is described which accounts for the results. Modification by 4-hydroxy-3-nitrophenylglyoxal reduced the affinity of the enzyme for the substrate and NADPH. The ligands offered no protection against inactivation. From this it is concluded that one arginine residue is essential at some stage of the catalysis. This residue is not associated with the substrate- or NADPH-binding site of the enzyme. Time-resolved fluorescence studies showed that the average fluorescence lifetime and the mobility of protein-bound FAD are affected by modification of the enzyme.  相似文献   

19.
The cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct, two major types of DNA damage caused by UV light, are repaired under illumination with near UV-visible light by CPD and (6-4) photolyases, respectively. To understand the mechanism of DNA repair, we examined the resonance Raman spectra of complexes between damaged DNA and the neutral semiquinoid and oxidized forms of (6-4) and CPD photolyases. The marker band for a neutral semiquinoid flavin and band I of the oxidized flavin, which are derived from the vibrations of the benzene ring of FAD, were shifted to lower frequencies upon binding of damaged DNA by CPD photolyase but not by (6-4) photolyase, indicating that CPD interacts with the benzene ring of FAD directly but that the (6-4) photoproduct does not. Bands II and VII of the oxidized flavin and the 1398/1391 cm(-1) bands of the neutral semiquinoid flavin, which may reflect the bending of U-shaped FAD, were altered upon substrate binding, suggesting that CPD and the (6-4) photoproduct interact with the adenine ring of FAD. When substrate was bound, there was an upshifted 1528 cm(-1) band of the neutral semiquinoid flavin in CPD photolyase, indicating a weakened hydrogen bond at N5-H of FAD, and band X seemed to be downshifted in (6-4) photolyase, indicating a weakened hydrogen bond at N3-H of FAD. These Raman spectra led us to conclude that the two photolyases have different electron transfer mechanisms as well as different hydrogen bonding environments, which account for the higher redox potential of CPD photolyase.  相似文献   

20.
Abe I  Kashiwagi K  Noguchi H 《FEBS letters》2000,483(2-3):131-134
Gallic acid and its esters were evaluated as enzyme inhibitors of recombinant p-hydroxybenzoate hydroxylase (PHBH), a NADPH-dependent flavin monooxygenase from Pseudomonas aeruginosa. n-Dodecyl gallate (DG) (IC(50)=16 microM) and (-)-epigallocatechin-3-O-gallate (EGCG) (IC(50)=16 microM), a major component of green tea polyphenols, showed the most potent inhibition, while product-like gallic acid did not inhibit the enzyme significantly (IC(50)>250 microM). Inhibition kinetics revealed that both DG and EGCG inhibited PHBH in a non-competitive manner (K(I)=18.1 and 14.0 microM, respectively). The enzyme inhibition was caused by specific binding of the antioxidative gallate to the enzyme, and by scavenging reactive oxygen species required for the monooxygenase reaction. Molecular modeling predicted that EGCG binds to the enzyme in the proximity of the FAD binding site via formation of three hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号