首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
By using the techniques of methylation analysis, uronic acid degradation, partial hydrolysis, and periodate oxidation, the structure of the capsular polysaccharide from Klebsiella serotype K70 has been investigated. Nuclear magnetic resonance was used extensively to characterize fragments obtained as a result of the various degradation procedures. The existence of a linear, hexasaccharide repeating unit having a 1-carboxyethylidene group attached to a 2-linked α-l-rhamnosyl residue in every second repeating unit has been demonstrated.  相似文献   

2.
The O-polysaccharide of Rahnella aquatilis 95 U003 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure:  相似文献   

3.
The pneumococcus type II capsular polysaccharide (SII) is composed of singly-branched hexasaccharide repeating units, for which three alternative structures have been proposed. The correct structure has now been determined by consecutive eliminations of the sugar residues in the side chain. The terminal D-glucuronic acid group was eliminated by treating the fully methylated and esterified SIIpolysaccharide first with base, and then with weak acid. The hydroxyl group at C-6 in the penultimate D-glucose residue released by this elimination was transformed into the 6-deoxy-6-tosyl derivative, and the residue thereafter eliminated by treatment with base. As the side-chains were eliminated by these reactions, it is considered that they contain only two sugar residues, which thus excludes two of the three alternative structures. Structure 1 was further confirmed by subjecting SII to a Smith degradation, which yielded the tetrasaccharide L-Rhap-(1 yields 3)-L-Rhap-(1 yields 3)-L-Rhap-(1 yields 2-erythritol, characterised by methylation analysis.  相似文献   

4.
The O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Providencia stuartii O47:H4, strain 3646/51. Studies by sugar and methylation analyses along with Smith degradation and 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, ROESY and H-detected 1H,13C HSQC and HMBC experiments, showed that the polysaccharide has a branched hexasaccharide repeating unit with the following structure: [carbohydrate structure: see text]  相似文献   

5.
Y M Choy  F Fehmel  N Frank    S Stirm 《Journal of virology》1975,16(3):581-590
Using periodate oxidation, methylation analysis, characterization of oligosaccharides by Smith degradation or partial acid hydrolysis, as well as proton magnetic resonance, the primary structure of the Escherichia coli serotype 29 capsular polysaccharide (the receptor of E. coli K phage 29) was reinvestigated. The polymer was found to consist of hexasaccharide repeating units of the following structure: (see article).  相似文献   

6.
The structure of the extracellular polysaccharide (EPS) from Lactobacillus rhamnosus strain GG has been investigated. In combination with component analysis, NMR spectroscopy shows that the polysaccharide is composed of hexasaccharide repeating units. Sequential information was obtained by two-dimensional (1)H,(1)H-NOESY, and (1)H,(13)C-HMBC NMR techniques. The structure of the repeating unit of the EPS from Lactobacillus rhamnosus strain GG was determined as: [carbohydrate structure: see text]  相似文献   

7.
The O-polysaccharide was isolated from the lipopolysaccharide of the plant-growth-promoting bacterium Azospirillum irakense KBC1 and studied by sugar and methylation analyses, Smith degradation and 1H and 13C NMR spectroscopy, including 1H, 13C HSQC and NOESY experiments for linkage and sequence analysis. The following structure of the branched hexasaccharide repeating unit of the O-polysaccharide with an unusually long side chain was established: [carbohydrate structure: see text].  相似文献   

8.
The structure of an acidic exopolysaccharide (EPS) from eight strains of Burkholderia cepacia has been investigated by methylation and sugar analysis, periodate oxidation-Smith degradation, and partial acid-hydrolysis. An enzyme preparation obtained from the same organisms producing the EPS was also used to depolymerize the polysaccharide. Detailed NMR studies of the chemical and enzymatic degradation products showed that this EPS consists of a highly branched heptasaccharide-repeating unit with the following structure: [abstract: see text]. About three O-acetyl groups per repeating unit are present at undetermined positions.  相似文献   

9.
An acidic O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Escherichia coli O150 and studied by sugar and methylation analyses, triflic acid solvolysis, Smith degradation, (1)H and (13)C NMR spectroscopy, including 2D ROESY, (1)H,(13)C HSQC, HMQC-TOCSY, and HMBC experiments. The polysaccharide was found to contain a regioisomer of N-acetylisomuramic acid, 2-acetamido-4-O-[(S)-1-carboxyethyl]-2-deoxy-d-glucose [d-GlcNAc4(Slac)]. The structure of its hexasaccharide repeating unit was established.  相似文献   

10.
The repeating unit of the capsular polysaccharide from Klebsiella type K-34 has been established by methylation, partial hydrolysis, and Smith degradation to consist of a hexasaccharide repeating-unit built up of four l-rhamnose, one d-glucose, and one d-galacturonic acid residues. The anomeric configurations of the linkages was determined by proton and 13C-n.m.r. spectroscopy at each step of the degradation procedures. Further evidence for the configurations of the glycosidic linkages involved the use of proton T1 relaxation-times and oxidation by chromium trioxide. The data allowed assignment of the following structure for the repeating unit:  相似文献   

11.
The O-polysaccharide (O-antigen) of Providencia stuartii O44:H4 (strain 3768/51) was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, and H-detected (1)H,(13)C HSQC, and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure: [Formula: see text].  相似文献   

12.
We investigated the structures of the exopolysaccharides (EPSs) produced by Streptococcus thermophilus SFi39 and SFi12. Both polymers were found to have molecular masses of greater than 2 x 10(6) Da. The SFi39 EPS consisted of D-glucose and D-galactose in a molar ratio of 1:1, whereas the SFi12 EPS was composed of D-galactose, L-rhamnose, and D-glucose in a molar ratio of 3:2:1. Methylation analysis of and nuclear magnetic resonance spectra recorded from the native polysaccharide, as well as oligosaccharides released by partial acid hydrolysis, allowed the complete structural determination of the SFi39 EPS, which consists of the following tetrasaccharide repeating unit: [formula: see text] Similar spectra recorded only from the native polysaccharide were sufficient to allow the structural determination of the SFi12 EPS, which consists of the following hexasaccharide repeating unit: [formula: see text] This study shows that the texturizing properties of different S. thermophilus ropy strains are based on the production of EPSs exhibiting chemical similarities but structural differences.  相似文献   

13.
The structure of the O-specific side chain of the lipopolysaccharide (LPS) of Plesiomonas shigelloides, strain CNCTC 113/92 has been investigated by NMR spectroscopy, matrix-assisted laser desorption/ionization time of flight mass spectrometry and sugar and methylation analysis. It was concluded that the polysaccharide is composed of a hexasaccharide repeating unit with the following structure: in which D-beta-D-Hepp is Dglycero-beta-Dmanno-heptopyranose and 6d-beta-D-Hep is 6-deoxy-beta-Dmanno-heptopyranose. This structure represents a novel hexasaccharide repeating unit of bacterial O-antigen that is characteristic and unique to the Plesiomonas shigelloides strain. Using the high-resolution magic angle spinning technique, 1H-NMR spectra were also obtained for the O-polysaccharide components of isolated LPS and in their original form directly on the surface of bacterial cells.  相似文献   

14.
A viscous extracellular polysaccharide produced by Lactobacillus helveticus K16 has been investigated. Sugar and methylation analysis, 1H and 13C NMR spectroscopy revealed that the polysaccharide is composed of a hexasaccharide repeating unit. The sequence of sugar residues was determined by use of two-dimensional nuclear Overhauser effect spectroscopy and heteronuclear multiple bond connectivity experiments. The structure of the repeating unit of the exopolysaccharide from L. helveticus K16 is as follows: carbohydrate sequence [see text].  相似文献   

15.
The primary structure of Klebsiella serotype K10 capsular polysaccharide has been investigated using mainly the techniques of methylation, partial hydrolysis, and 1H and 13C NMR spectroscopy. The polysaccharide was found to consist of hexasaccharide repeating units having the following structure: (formula; see text)  相似文献   

16.
The acidic capsular polysaccharide isolated from Escherichia coli O9:K39:H9 was investigated, using n.m.r. spectroscopy, methylation analysis, uronic acid degradation of the native and methylated polysaccharides, and bacteriophage-associated enzyme degradation. The structure of the repeating unit, which is shown below, is identical to that reported for Klebsiella serotype-61 capsular polysaccharide. (formula; see text)  相似文献   

17.
The lipopolysaccharide produced by Salmonella livingstone (O:6,7) was composed of an antigenic O-polysaccharide which was shown by composition, methylation analysis, and high resolution nuclear magnetic resonance studies to be a high molecular weight polymer containing D-glucose, 2-acetamido-2-deoxy-D-glucose, and D-mannose residues (1:1:4) composed in a repeating hexasaccharide unit having the structure: (formula; see text)  相似文献   

18.
A novel extracellular low-molecular-weight polysaccharide was detected as a contaminant within extracellular cyclic beta-1,6-beta-1,3-glucan preparations from Bradyrhizobium japonicum USDA 110 cultures. Compositional analysis, methylation analysis, and nuclear magnetic resonance analysis revealed that this low-molecular-weight polysaccharide was composed of the same pentasaccharide repeating unit previously described for the high-molecular-weight form of the exopolysaccharide (EPS) synthesized by B. japonicum strains. Mass spectrometry analysis indicated that the size of this low-molecular-weight form of EPS was consistent with a dimeric form of the pentasaccharide repeating unit.  相似文献   

19.
Pseudomonas strain 1.15 was isolated from a freshwater biofilm and shown to produce considerable amounts of an acidic polysaccharide which was investigated by methylation analysis, NMR spectroscopy and ionspray mass spectrometry (ISMS). The polysaccharide was depolymerised by a bacteriophage-associated endoglucosidase and by autohydrolysis, and the resulting oligosaccharides were investigated by NMR spectroscopy and mass spectrometry. The resulting data showed that the parent repeating unit of the 1.15 exopolysaccharide (EPS) is a branched hexasaccharide. The main chain is constituted of the trisaccharide -->4)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-beta-D-Glcp- (1--> and the side chain alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3)-alpha-D-Galp-(1-->is linked to O-3 of the first Fuc residue. The terminal non-reducing Gal carries a 1-carboxyethylidene acetal in the R configuration at the positions 4 and 6. Of the four different O-acetyl groups present in non-stoichiometric amounts, two were established to be on O-2 of the 3-linked Gal and on O-2 of the 4-linked Fuc.  相似文献   

20.
A neutral O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of the plant-growth-promoting bacterium Azospirillum lipoferum Sp59b. On the basis of sugar and methylation analyses along with 1D and 2D (1)H and (13)C NMR spectroscopy, including a NOESY experiment, the following structure of the branched hexasaccharide repeating unit of the O-polysaccharide was established: [carbohydrate structure: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号