首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo H  Chen J  Chen K  Shen X  Jiang H 《Biochemistry》2006,45(39):11827-11835
Coronavirus nucleocapsid (N) protein envelops the genomic RNA to form long helical nucleocapsid during virion assembly. Since N protein oligomerization is usually a crucial step in this process, characterization of such an oligomerization will help in the understanding of the possible mechanisms for nucleocapsid formation. The N protein of severe acute respiratory syndrome coronavirus (SARS-CoV) was recently discovered to self-associate by its carboxyl terminus. In this study, to further address the detailed understanding of the association feature of this C-terminus, its oligomerization was systematically investigated by size exclusion chromatography and chemical cross-linking assays. Our results clearly indicated that the C-terminal domain of SARS-CoV N protein could form not only dimers but also trimers, tetramers, and hexamers. Further analyses against six deletion mutants showed that residues 343-402 were necessary and sufficient for this C-terminus oligomerization. Although this segment contains many charged residues, differences in ionic strength have no effects on its oligomerization, indicating the absence of electrostatic force in SARS-CoV N protein C-terminus self-association. Gel shift assay results revealed that the SARS-CoV N protein C-terminus is also able to associate with nucleic acids and residues 363-382 are the responsible interaction partner, demonstrating that this fragment might involve genomic RNA binding sites. The fact that nucleic acid binding could promote the SARS-CoV N protein C-terminus to form high-order oligomers implies that the oligomeric SARS-CoV N protein probably combines with the viral genomic RNA in triggering long nucleocapsid formation.  相似文献   

2.
Luo H  Ye F  Chen K  Shen X  Jiang H 《Biochemistry》2005,44(46):15351-15358
The nucleocapsid (N) protein of SARS coronavirus (SARS-CoV) is reported to function in encapsidating the viral genomic RNA into helical nucleocapsid, and its self-association is believed to be vital in coating the viral genomic RNA. Characterization of SARS-CoV N multimerization may thereby help us better understand the coronavirus assembly. In the current work, using the yeast two-hybrid technique, an unexpected interaction between residues 1-210 and 211-290 (central region) of the SARS-CoV N protein was detected, and SPR results further revealed that the SR-rich motif (amino acids 183-197) of SARS-CoV N protein is responsible for such an interaction. Chemical cross-linking and gel-filtration analyses indicated that the residues 283-422 of the SARS-CoV N protein have multimeric ability, although the full-length N protein is prone to exist predominantly as dimers. In addition, the multimeric ability of the C-terminal domain of SARS-CoV N protein could be weakened by the SR-rich motif interaction with the central region (amino acids 211-290). All of these data suggested that the SR-rich motif of the SARS-CoV N protein might play an import role in the transformation of the SARS-CoV N protein between the dimer and multimer during its binding to its central region for self-association or dissociation. This current paper will hopefully provide some new ideas in studying SARS-CoV N multimerization.  相似文献   

3.
Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.  相似文献   

4.
Modular organization of SARS coronavirus nucleocapsid protein   总被引:1,自引:0,他引:1  
The SARS-CoV nucleocapsid (N) protein is a major antigen in severe acute respiratory syndrome. It binds to the viral RNA genome and forms the ribonucleoprotein core. The SARS-CoV N protein has also been suggested to be involved in other important functions in the viral life cycle. Here we show that the N protein consists of two non-interacting structural domains, the N-terminal RNA-binding domain (RBD) (residues 45–181) and the C-terminal dimerization domain (residues 248–365) (DD), surrounded by flexible linkers. The C-terminal domain exists exclusively as a dimer in solution. The flexible linkers are intrinsically disordered and represent potential interaction sites with other protein and protein-RNA partners. Bioinformatics reveal that other coronavirus N proteins could share the same modular organization. This study provides information on the domain structure partition of SARS-CoV N protein and insights into the differing roles of structured and disordered regions in coronavirus nucleocapsid proteins. CK Chang and SC Sue contributed equally to this project.  相似文献   

5.
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The nucleocapsid (N) protein plays an essential role in SARS-CoV genome packaging and virion assembly. We have previously shown that SARS-CoV N protein forms a dimer in solution through its C-terminal domain. In this study, the crystal structure of the dimerization domain, consisting of residues 270-370, is determined to 1.75A resolution. The structure shows a dimer with extensive interactions between the two subunits, suggesting that the dimeric form of the N protein is the functional unit in vivo. Although lacking significant sequence similarity, the dimerization domain of SARS-CoV N protein has a fold similar to that of the nucleocapsid protein of the porcine reproductive and respiratory syndrome virus. This finding provides structural evidence of the evolutionary link between Coronaviridae and Arteriviridae, suggesting that the N proteins of both viruses have a common origin.  相似文献   

6.
7.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus (CoV) that was identified and molecularly characterized in 2003. Previous studies on various coronaviruses indicate that protein-protein interactions amongst various coronavirus proteins are critical for viral assembly and morphogenesis. It is necessary to elucidate the molecular mechanism of SARS-CoV replication and rationalize the anti-SARS therapeutic intervention. In this study, we employed an in vitro GST pull-down assay to investigate the interaction between the membrane (M) and the nucleocapsid (N) proteins. Our results show that the interaction between the M and N proteins does take place in vitro. Moreover, we provide an evidence that 12 amino acids domain (194-205) in the M protein is responsible for binding to N protein. Our work will help shed light on the molecular mechanism of the virus assembly and provide valuable information pertaining to rationalization of future anti-viral strategies.  相似文献   

8.

Background

Coronavirus membrane (M) proteins are capable of interacting with nucleocapsid (N) and envelope (E) proteins. Severe acute respiratory syndrome coronavirus (SARS-CoV) M co-expression with either N or E is sufficient for producing virus-like particles (VLPs), although at a lower level compared to M, N and E co-expression. Whether E can release from cells or E/N interaction exists so as to contribute to enhanced VLP production is unknown. It also remains to be determined whether E palmitoylation or disulfide bond formation plays a role in SARS-CoV virus assembly.

Results

SARS-CoV N is released from cells through an association with E protein-containing vesicles. Further analysis suggests that domains involved in E/N interaction are largely located in both carboxyl-terminal regions. Changing all three E cysteine residues to alanines did not exert negative effects on E release, E association with N, or E enhancement of VLP production, suggesting that E palmitoylation modification or disulfide bond formation is not required for SARS-CoV virus assembly. We found that removal of the last E carboxyl-terminal residue markedly affected E release, N association, and VLP incorporation, but did not significantly compromise the contribution of E to efficient VLP production.

Conclusions

The independence of the SARS-CoV E enhancement effect on VLP production from its viral packaging capacity suggests a distinct SARS-CoV E role in virus assembly.  相似文献   

9.
The severe acute respiratory syndrome coronavirus(SARS-CoV) nucleocapsid (N) protein is one of the four structural proteins of the virus and is predicted to be a 46-kDa phosphoprotein. Our in silico analysis predicted N to be heavily phosphorylated at multiple residues. Experimentally, we have shown in this report that the N protein of the SARS-CoV gets serine-phosphorylated by multiple kinases, in both the cytoplasm and the nucleus. The phosphoprotein is stable and localizes in the cytoplasm and coprecipitates with the membrane fraction. Also, using specific inhibitors of phosphorylation and an in vitro phosphorylation assay, we show that the nucleocapsid protein is a substrate of cyclin-dependent kinase (CDK), glycogen synthase kinase, mitogen-activated protein kinase, and casein kinase II. Further, we show that the phosphorylated protein is translocated to the cytoplasm by binding to 14-3-3 (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein). 14-3-3 proteins are a family of highly conserved, ubiquitously expressed eukaryotic proteins that function primarily as adapters that modulate interactions between components of various cellular signaling and cell cycle regulatory pathways through phosphorylation-dependent protein-protein interactions. Coincidentally, the N protein was also found to downregulate the expression of the theta isoform of 14-3-3 (14-3-3theta), leading to the accumulation of phosphorylated N protein in the nucleus, in the absence of growth factors. Using short interfering RNA specific to 14-3-3theta we have inhibited its expression to show accumulation of phosphorylated N protein in the nucleus. Thus, the data presented here provide a possible mechanism for phosphorylation-dependent nucleocytoplasmic shuttling of the N protein. This 14-3-3-mediated transport of the phosphorylated N protein and its possible implications in interfering with the cellular machinery are discussed.  相似文献   

10.
为了明确抗SARS-CoVN蛋白单克隆抗体的特异性,并鉴定其识别表位,首先在E.coli中表达了人类冠状病毒229E(HCoV-229E)和OC43(HCoV-OC4)N蛋白,用Westernblotting和间接免疫荧光方法分别检测了4株抗SARS-CoVN蛋白单克隆抗体(1-1C2、1-1D6、2-8F11和2-2E5)与HCoV-OC43和HCoV-229E及其N蛋白的交叉反应情况,而后应用12种重组截短型SARS-CoVN蛋白对上述4种单克隆抗体的识别表位进行了初步定位。结果显示:(1)在4株抗N蛋白单克隆抗体中,1-1C2、1-1D6和2-2E5不与HCoV-OC43和HCoV-229E及其N蛋白发生交叉反应,为SARS-CoVN蛋白特异性抗体;(2)2-8F11、1-1D6和2-2E5针对的抗原表位位于SARS-CoVN蛋白的aa30-60,1-1C2针对的抗原表位则位于SARS-CoVN蛋白的aa170-184。这一研究为阐明SARS-CoVN蛋白的免疫学特征,建立特异性免疫诊断技术和研究其致病机制提供了必要的依据和材料。  相似文献   

11.
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The viral nucleocapsid (N) protein plays an essential role in viral RNA packaging. In this study, recombinant SARS-CoV N protein was shown to be dimeric by analytical ultracentrifugation, size exclusion chromatography coupled with light scattering, and chemical cross-linking. Dimeric N proteins self-associate into tetramers and higher molecular weight oligomers at high concentrations. The dimerization domain of N was mapped through studies of the oligomeric states of several truncated mutants. Although mutants consisting of residues 1-210 and 1-284 fold as monomers, constructs consisting of residues 211-422 and 285-422 efficiently form dimers. When in excess, the truncated construct 285-422 inhibits the homodimerization of full-length N protein by forming a heterodimer with the full-length N protein. These results suggest that the N protein oligomerization involves the C-terminal residues 285-422, and this region is a good target for mutagenic studies to disrupt N protein self-association and virion assembly.  相似文献   

12.
Antibody detection of SARS-CoV spike and nucleocapsid protein   总被引:9,自引:0,他引:9  
Early detection and identification of SARS-CoV-infected patients and actions to prevent transmission are absolutely critical to prevent another SARS outbreak. Antibodies that specifically recognize the SARS-CoV spike and nucleocapsid proteins may provide a rapid screening method to allow accurate identification and isolation of patients with the virus early in their infection. For this reason, we raised peptide-induced polyclonal antibodies against SARS-CoV spike protein and polyclonal antibodies against SARS-CoV nucleocapsid protein using 6x His nucleocapsid recombinant protein. Western blot analysis and immunofluorescent staining showed that these antibodies specifically recognized SARS-CoV.  相似文献   

13.
Chow KY  Yeung YS  Hon CC  Zeng F  Law KM  Leung FC 《FEBS letters》2005,579(30):6699-6704
The pro-apoptotic properties of severe acute respiratory syndrome coronavirus (SARS-CoV) structural proteins were studied in vitro. By monitoring apoptosis indicators including chromatin condensation, cellular DNA fragmentation and cell membrane asymmetry, we demonstrated that the adenovirus-mediated over-expression of SARS-CoV spike (S) protein and its C-terminal domain (S2) induce apoptosis in Vero E6 cells in a time- and dosage-dependent manner, whereas the expression of its N-terminal domain (S1) and other structural proteins, including envelope (E), membrane (M) and nucleocapsid (N) protein do not. These findings suggest a possible role of S and S2 protein in SARS-CoV induced apoptosis and the molecular pathogenesis of SARS.  相似文献   

14.
GST pull-down assays were used to characterize the SARS-CoV membrane (M) and nucleocapsid (N) interaction, and it was found that the amino acids 211-254 of N protein were essential for this interaction. When tetrad glutamines (Q) were replaced with glutamic acids (E) at positions of 240-243 of the N protein, the interaction was disrupted.  相似文献   

15.
The P0 protein is a major structural glycoprotein of molecular weight 28,000 in peripheral nerve myelin. The complete amino acid sequence of bovine P0 protein was determined. The polypeptide chain consists of 219 amino acid residues and includes a highly hydrophobic domain (residues 125-150) in the middle, which probably represents a transmembrane segment. The amino terminal domain (residues 1-124) is relatively hydrophobic, but contains a negatively charged carbohydrate chain at Asn93. This domain is most likely located on the extracellular side of the membrane and may contribute to formation of the myelin intraperiod line by hydrophobic and electrostatic interactions. On the other hand, the basic carboxyl-terminal domain (residues 151-219) may protrude from the cytoplasmic side of the membrane and is probably involved together with basic proteins in the formation of the major myelin dense line through electrostatic interaction with acidic lipids in the membrane. The few interspecies amino acid variations between the bovine P0 and the rat P0 sequences, deduced from the cDNA (Lemke, G., and Axel, R. (1985) Cell 40, 501-508), indicate that the P0 protein is conserved across species.  相似文献   

16.
Severe acute respiratory syndrome coronavirus (SARS-CoV) 7a is an accessory protein with no known homologues. In this study, we report the interaction of a SARS-CoV 7a and small glutamine-rich tetratricopeptide repeat-containing protein (SGT). SARS-CoV 7a and human SGT interaction was identified using a two-hybrid system screen and confirmed with interaction screens in cell culture and cellular co-localization studies. The SGT domain of interaction was mapped by deletion mutant analysis and results indicated that tetratricopeptide repeat 2 (aa 125-158) was essential for interaction. We also showed that 7a interacted with SARS-CoV structural proteins M (membrane) and E (envelope), which have been shown to be essential for virus-like particle formation. Taken together, our results coupled with data from studies of the interaction between SGT and HIV-1 vpu indicated that SGT could be involved in the life-cycle, possibly assembly of SARS-CoV.  相似文献   

17.
Severe acute respiratory syndrome-coronavirus (SARS-CoV) causes an infectious disease through respiratory route. Diagnosing the disease effectively and accurately at early stage is essential for preventing the disease transmission and performing antiviral treatment. In this study, we raised monoclonal antibodies (mAbs) against the nucleocapsid (N) protein of SARS-CoV and mapped epitopes by using different truncated N protein fragments. The mapping of those epitopes was valuable for constructing pair-Abs used in serological diagnosis. The results showed that all of the six raised mAbs were divided into two groups recognizing the region of amino acids 249-317 (A group) or 317-395 (B group). This region spanning amino acids 249-395 contains predominant B cell epitopes located at the C-terminus of N protein. One pair-Abs, consisting of N protein-specific rabbit polyclonal antibody and SARS-CoV N protein-specific mAb, was selected to construct a sandwich ELISA-kit. The kit was able to specifically detect SARS-CoV N proteins in serum samples.  相似文献   

18.
Yuan Q  Liao Y  Torres J  Tam JP  Liu DX 《FEBS letters》2006,580(13):3192-3200
Coronavirus envelope (E) protein is a small integral membrane protein with multi-functions in virion assembly, morphogenesis and virus-host interaction. Different coronavirus E proteins share striking similarities in biochemical properties and biological functions, but seem to adopt distinct membrane topology. In this report, we study the membrane topology of the SARS-CoV E protein by immunofluorescent staining of cells differentially permeabilized with detergents and proteinase K protection assay. It was revealed that both the N- and C-termini of the SARS-CoV E protein are exposed to the cytoplasmic side of the membranes (N(cyto)C(cyto)). In contrast, parallel experiments showed that the E protein from infectious bronchitis virus (IBV) spanned the membranes once, with the N-terminus exposed luminally and the C-terminus exposed cytoplasmically (N(exo(lum)-)C(cyto)). Intriguingly, a minor proportion of the SARS-CoV E protein was found to be modified by N-linked glycosylation on Asn 66 and inserted into the membranes once with the C-terminus exposed to the luminal side. The presence of two distinct membrane topologies of the SARS-CoV E protein may provide a useful clue to the pathogenesis of SARS-CoV.  相似文献   

19.
20.
The coronavirus nucleocapsid (N) protein packages viral genomic RNA into a ribonucleoprotein complex. Interactions between N proteins and RNA are thus crucial for the assembly of infectious virus particles. The 45 kDa recombinant nucleocapsid N protein of coronavirus infectious bronchitis virus (IBV) is highly sensitive to proteolysis. We obtained a stable fragment of 14.7 kDa spanning its N-terminal residues 29-160 (IBV-N29-160). Like the N-terminal RNA binding domain (SARS-N45-181) of the severe acute respiratory syndrome virus (SARS-CoV) N protein, the crystal structure of the IBV-N29-160 fragment at 1.85 A resolution reveals a protein core composed of a five-stranded antiparallel beta sheet with a positively charged beta hairpin extension and a hydrophobic platform that are probably involved in RNA binding. Crosslinking studies demonstrate the formation of dimers, tetramers, and higher multimers of IBV-N. A model for coronavirus shell formation is proposed in which dimerization of the C-terminal domain of IBV-N leads to oligomerization of the IBV-nucleocapsid protein and viral RNA condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号