首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
目的制备具备完整空间构型且纯度在90%以上的灭活HIV-1病毒,用于HIV疫苗研究。方法应用化学制剂2,2’-dithiodipyridine(aldrithiol-2;AT-2)灭活HIV-1病毒,对灭活的病毒超速离心浓缩并洗涤去除灭活用的化学制剂AT-2。采用分子筛技术去除灭活病毒中残存的杂质蛋白质。结果 250μmol/L AT-2与HIV-137℃作用1 h可以彻底灭活病毒的感染性,同时保留病毒的免疫原性。灭活的病毒纯化后检测不到AT-2的残留,检测牛血清蛋白残余量低于50 ng/mL。结论灭活的HIV-1病毒经过纯化后纯度达到95.6%,可以满足作为HIV疫苗研究的免疫刺激剂的使用要求。  相似文献   

3.
We describe a new approach for the preparation of inactivated retroviruses for vaccine application. The lipid domain of the viral envelope was selectively targeted to inactivate proteins and lipids therein and block fusion of the virus with the target cell membrane. In this way, complete elimination of the infectivity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) could be achieved with preservation of antigenic determinants on the surface of the viral envelope. Inactivation was accomplished by modification of proteins and lipids in the viral envelope using the hydrophobic photoinduced alkylating probe 1,5 iodonaphthylazide (INA). Treatment of HIV and SIV isolates with INA plus light completely blocked fusion of the viral envelope and abolished infectivity. The inactivated virus remained structurally unchanged, with no detectable loss of viral proteins. Modifications to envelope and nucleocapsid proteins were detected by changes in their elution pattern on reverse-phase high-performance liquid chromatography. These modifications had no effect on primary and secondary structure epitopes as determined by monoclonal antibodies. Likewise, the inactivated HIV reacted as well as the live virus with the conformation-sensitive and broadly neutralizing anti-HIV type 1 monoclonal antibodies 2G12, b12, and 4E10. Targeting the lipid domain of biological membranes with hydrophobic alkylating compounds could be used as a general approach for inactivation of enveloped viruses and other pathogenic microorganisms for vaccine application.  相似文献   

4.
5.
The lack of success of subunit human immunodeficiency virus type 1 (HIV-1) vaccines to date suggests that multiple components or a complex virion structure may be required. We previously demonstrated retention of the major conformational epitopes of HIV-1 envelope following thermal treatment of virions. Moreover, antibody binding to some of these epitopes was significantly enhanced following thermal treatment. These included the neutralizing epitopes identified by monoclonal antibodies 1b12, 2G12, and 17b, some of which have been postulated to be partially occluded or cryptic in native virions. Based upon this finding, we hypothesized that a killed HIV vaccine could be derived to elicit protective humoral immune responses. Shedding of HIV-1 envelope has been described for some strains of HIV-1 and has been cited as one of the major impediments to developing an inactivated HIV-1 vaccine. In the present study, we demonstrate that treatment of virions with low-dose formaldehyde prior to thermal inactivation retains the association of viral envelope with virions. Moreover, mice and nonhuman primates vaccinated with formaldehyde-treated, thermally inactivated virions produce antibodies capable of neutralizing heterologous strains of HIV in peripheral blood mononuclear cell-, MAGI cell-, and U87-based infectivity assays. These data indicate that it is possible to create an immunogen by using formaldehyde-treated, thermally inactivated HIV-1 virions to induce neutralizing antibodies. These findings have broad implications for vaccine development.  相似文献   

6.
Hepatitis delta virus (HDV) particles are coated with the envelope proteins (large, middle, and small) of the hepatitis B virus (HBV). The large protein bears an infectivity determinant in its pre-S1 domain, whereas a second determinant has been proposed to map to the cysteine-rich antigenic loop (AGL) within the S domain of all three envelope proteins (G. Abou Jaoudé and C. Sureau, J. Virol. 79:10460-10466, 2006). In this study, the AGL cysteines were substituted by serine or alanine, and the mutants were evaluated for their function at viral entry using HDV particles and susceptible HepaRG cells. Mutations of cysteines 121 to 149 were tolerant of the production of HDV virions. The mutations altered the structure and antigenicity of the conserved “a” determinant of the AGL, as measured by conformation-sensitive antibodies, and they created a block to infectivity. Substitution of Cys-90 or Cys-221, located outside of the AGL, had no impact on the “a” determinant or viral entry. Furthermore, infectivity was maintained when the AGL CxxC motif at position 121 to 124 was modified by single-amino-acid deletion or insertion, suggesting that cysteines 121 and 124 are not catalyzers of thiol/disulfide exchange. However, membrane-impermeable inhibitors of thiol/disulfide isomerazation demonstrated a dose-dependent inhibition of infection in an in vitro assay when applied to the virus prior to inoculation or during the virus-cell interaction period. Overall, the results demonstrate the essential role of the AGL cysteines at viral entry, and they establish a correlation between the cysteine disulfide network, the conformation of the “a” determinant, and infectivity.  相似文献   

7.
Characterization of the envelope proteins of pseudorabies virus.   总被引:33,自引:28,他引:5       下载免费PDF全文
Previously we have reported that among the proteins of purified pseudorabies virions there are four major glycoproteins (T. Ben-Porat and A. S. Kaplan, Virology 41:265-273, 1970). Several minor glycoproteins can also be identified by two-dimensional gel electrophoresis. Removal of the viral envelope with Triton X-100 selectively removes from the virions all of the glycoproteins as well as several non-glycosylated proteins. Sedimentation analysis or chromatography of these proteins reveals that several are complexed with one another, some being covalently linked via disulfide bridges. Analysis of the proteins by immunoprecipitation with monoclonal antibodies reactive with the membrane proteins showed also that three of the four major virus glycoproteins (125K, 74K, and 58K; gIIa, gIIb, and gIIc, respectively) are linked covalently by disulfide bridges. Furthermore, all three share extensive sequence homology as indicated by the identity of their antigenic determinants and by partial peptide mapping; they probably originate from a single protein precursor. The fourth major glycoprotein (98K; gIII) is not complexed to any other protein. Three minor glycoproteins (130K [gI], 98K [gIV], and 62K [gV]), which form a noncovalently linked complex with a 115K nonglycosylated protein, have also been identified. Of the monoclonal antibodies used in this study, only those reactive with the major 98K glycoprotein (gIII) inhibit virus adsorption and neutralize virus infectivity in the absence of complement. However, all react with surface components of the virion, indicating that the proteins with which they react are exposed on the surface of the virions. A nomenclature for the pseudorabies virus glycoproteins is proposed.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) envelope comprises a surface gp120 and a transmembrane gp41. The cytoplasmic domain of gp41 contains cysteine residues (C764 and C837) which are targets for palmitoylation and were reported to be required for envelope association with lipid rafts and assembly on budding virions (I. Rousso, M. B. Mixon, B. K. Chen, and P. S. Kim, Proc. Natl. Acad. Sci. USA 97:13523-13525, 2000). Several infectious HIV-1 clones contain envelopes that have no gp41 cytoplasmic cysteines. Since no other gp41 amino acid is a target for palmitoylation, these clones imply that palmitoylation is not essential for envelope trafficking and assembly. Here, we show that HIV-1 envelope mutants that lack gp41 cytoplasmic cysteines are excluded from light lipid rafts. Envelopes that contained residues with bulky hydrophobic side chains instead of cysteines retained their association with heavy rafts and were nearly fully functional for incorporation into virions and infectivity. Substitution of cysteines with alanines or serines eliminated raft association and more severely reduced envelope incorporation onto virions and their infectivity. Nevertheless, the A764/A837 mutant envelope retained nearly 40% infectivity compared to the wild type, even though this envelope was excluded from lipid rafts. Our results demonstrate that gp41 cytoplasmic cysteines that are targets for palmitoylation and are required for envelope trafficking to classical lipid rafts are not essential for HIV-1 replication.  相似文献   

9.
Madani N  Kabat D 《Journal of virology》2000,74(13):5982-5987
The vif gene of human immunodeficiency virus type 1 (HIV-1) greatly enhances the infectivity of HIV-1 virions that are released from cells classified as nonpermissive (e.g., lymphocytes, macrophages, and H9 leukemic T cells) but is irrelevant in permissive cells (e.g., HeLa or COS cells). Recently, it was reported that vif expression in nonpermissive cells dramatically increases infectivity not only of HIV-1 but also of other enveloped viruses, including murine leukemia viruses (MLVs). This was surprising in part because MLVs and other murine retroviruses lack vif genes yet replicate efficiently in T lymphocytes. To investigate these issues, we first developed improved methods for producing substantial quantities of HIV-1 virions with vif deletions from healthy H9 cells. These virions had approximately the same amounts of major core proteins and envelope glycoproteins as the control wild-type virions but were only approximately 1% as infectious. We then produced H9 cells that contained wild-type or vif deletion HIV-gpt proviruses, which lack a functional env gene. After superinfection with either xenotropic or amphotropic MLVs, these cells released HIV-gpt virions pseudotyped with an MLV envelope plus replication-competent MLV. Interestingly, the pseudotyped HIV-gpt (vif deletion) virions were noninfectious, whereas the MLV virions simultaneously released from the same H9 cells were fully infectious. These results strongly suggest that the Vif protein functions in a manner that is both cell specific and at least substantially specific for HIV-1 and related lentiviruses. In addition, these results confirm that vif deletion HIV-1 virions from nonpermissive cells are blocked at a postpenetration stage of the infection pathway.  相似文献   

10.
The use of inactivated influenza virus for the development of vaccines with broad heterosubtypic protection requires selective inactivation techniques that eliminate viral infectivity while preserving structural integrity. Here we tested if a hydrophobic inactivation approach reported for retroviruses could be applied to the influenza virus. By this approach, the transmembrane domains of viral envelope proteins are selectively targeted by the hydrophobic photoactivatable compound 1,5-iodonaphthyl-azide (INA). This probe partitions into the lipid bilayer of the viral envelope and upon far UV irradiation reacts selectively with membrane-embedded domains of proteins and lipids while the protein domains that localize outside the bilayer remain unaffected. INA treatment of influenza virus blocked infection in a dose-dependent manner without disrupting the virion or affecting neuraminidase activity. Moreover, the virus maintained the full activity in inducing pH-dependent lipid mixing, but pH-dependent redistribution of viral envelope proteins into the target cell membrane was completely blocked. These results indicate that INA selectively blocks fusion of the virus with the target cell membrane at the pore formation and expansion step. Using a murine model of influenza virus infection, INA-inactivated influenza virus induced potent anti-influenza virus serum antibody and T-cell responses, similar to live virus immunization, and protected against heterosubtypic challenge. INA treatment of influenza A virus produced a virus that is noninfectious, intact, and fully maintains the functional activity associated with the ectodomains of its two major envelope proteins, neuraminidase and hemagglutinin. When used as a vaccine given intranasally (i.n.), INA-inactivated influenza virus induced immune responses similar to live virus infection.  相似文献   

11.
An DS  Xie Ym  Chen IS 《Journal of virology》2001,75(7):3488-3489
A member of the human endogenous retrovirus (HERV) family termed HERV-W encodes a highly fusogenic membrane glycoprotein that appears to be expressed specifically in the placenta. It is unclear whether the glycoproteins of the HERVs can serve as functional retrovirus envelope proteins to confer infectivity on retrovirus particles. We found that the HERV-W envelope glycoprotein can form pseudotypes with human immunodeficiency virus type 1 virions and confers tropism for CD4-negative cells. Thus, the HERV-W env gene represents the first HERV env gene demonstrated to encode the functional properties of a retrovirus envelope glycoprotein.  相似文献   

12.
Equine arteritis virus (EAV) is an enveloped, positive-strand RNA virus belonging to the family Arteriviridae of the order NIDOVIRALES: EAV virions contain six different envelope proteins. The glycoprotein GP(5) (previously named G(L)) and the unglycosylated membrane protein M are the major envelope proteins, while the glycoproteins GP(2b) (previously named G(S)), GP(3), and GP(4) are minor structural proteins. The unglycosylated small hydrophobic envelope protein E is present in virus particles in intermediate molar amounts compared to the other transmembrane proteins. The GP(5) and M proteins are both essential for particle assembly. They occur as covalently linked heterodimers that constitute the basic protein matrix of the envelope. The GP(2b), GP(3), and GP(4) proteins occur as a heterotrimeric complex in which disulfide bonds play an important role. The function of this complex has not been established yet, but the available data suggest it to be involved in the viral entry process. Here we investigated the role of the four cysteine residues of the mature GP(2b) protein in the assembly of the GP(2b)/GP(3)/GP(4) complex. Open reading frames encoding cysteine-to-serine mutants of the GP(2b) protein were expressed independently or from a full-length infectious EAV cDNA clone. The results of these experiments support a model in which the cysteine residue at position 102 of GP(2b) forms an intermolecular cystine bridge with one of the cysteines of the GP(4) protein, while the cysteine residues at positions 48 and 137 of GP(2b) are linked by an intrachain disulfide bond. In this model, another cysteine residue in the GP(4) protein is responsible for the covalent association of GP(3) with the disulfide-linked GP(2b)/GP(4) heterodimer. In addition, our data highlight the importance of the correct association of the minor EAV envelope glycoproteins for their efficient incorporation into viral particles and for virus infectivity.  相似文献   

13.
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.  相似文献   

14.
A member of the HERV-W family of human endogenous retroviruses (HERV) had previously been demonstrated to encode a functional envelope which can form pseudotypes with human immunodeficiency virus type 1 virions and confer infectivity on the resulting retrovirus particles. Here we show that a second envelope protein sorted out by a systematic search for fusogenic proteins that we made among all the HERV coding envelope genes and belonging to the HERV-FRD family can also make pseudotypes and confer infectivity. We further show that the orthologous envelope genes that were isolated from simians-from New World monkeys to humans-are also functional in the infectivity assay, with one singular exception for the gibbon HERV-FRD gene, which is found to be fusogenic in a cell-cell fusion assay, as observed for the other simian envelopes, but which is not infectious. Sequence comparison of the FRD envelopes revealed a limited number of mutations among simians, and one point mutation-located in the TM subunit-was shown to be responsible for the loss of infectivity of the gibbon envelope. The functional characterization of the identified envelopes is strongly indicative of an ancestral retrovirus infection and endogenization, with some of the envelope functions subsequently retained in evolution.  相似文献   

15.
The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.  相似文献   

16.
Inactivation of viral particles is the basis for several vaccines currently in use. Initial attempts to use simian immunodeficiency virus to model a killed human immunodeficiency virus type 1 (HIV-1) vaccine were unsuccessful, and limited subsequent effort has been directed toward a systematic study of the requirements for a protective killed HIV-1 vaccine. Recent insights into HIV-1 virion and glycoprotein structure and neutralization epitopes led us to revisit whether inactivated HIV-1 particles could serve as the basis for an HIV-1 vaccine. Our results indicate that relatively simple processes involving thermal and chemical inactivation can inactivate HIV-1 by at least 7 logs. For some HIV-1 strains, significant amounts of envelope glycoproteins are retained in high-molecular-weight fractions. Importantly, we demonstrate retention of each of three conformation-dependent neutralization epitopes. Moreover, reactivity of monoclonal antibodies directed toward these epitopes is increased following treatment, suggesting greater exposure of the epitopes. In contrast, treatment of free envelope under the same conditions leads only to decreased antibody recognition. These inactivated virions can also be presented by human dendritic cells to direct a cell-mediated immune response in vitro. These data indicate that a systematic study of HIV-1 inactivation, gp120 retention, and epitope reactivity with conformation-specific neutralizing antibodies can provide important insights for the development of an effective killed HIV-1 vaccine.  相似文献   

17.
A novel type of whole inactivated simian immunodeficiency virus (SIV) virion vaccine immunogen with functional envelope glycoproteins was evaluated, without adjuvant, in rhesus macaques. Immunogens included purified inactivated virions of SIVmac239, a designed mutant of SIVmac239 with gp120 carbohydrate attachment sites deleted (SIVmac239 g4,5), and SIVmneE11S. The vaccines were noninfectious, safe, and immunogenic, inducing antibody responses and cellular responses, including responses by CD8+ lymphocytes. Interpretation of protective efficacy following intrarectal challenge was complicated by incomplete take of the challenge in some SIV na?ve controls.  相似文献   

18.
Disulfide bonds were found to link the nonglycosylated envelope protein VP-2/M (19 kDa), encoded by open reading frame 6, and the major envelope glycoprotein VP-3 (25 to 42 kDa), encoded by open reading frame 5, of lactate dehydrogenase-elevating virus (LDV). The two proteins comigrated in a complex of 45 to 55 kDa when the virion proteins were electrophoresed under nonreducing conditions but dissociated under reducing conditions. Furthermore, VP-2/M was quantitatively precipitated along with VP-3 in this complex by three neutralizing monoclonal antibodies to VP-3. The infectivity of LDV was rapidly and irreversibly lost during incubation with 5 to 10 mM dithiothreitol (> 99% in 6 h at room temperature), which is known to reduce disulfide bonds. LDV inactivation correlated with dissociation of VP-2/M and VP-3. The results suggest that disulfide bonds between VP-2/M and VP-3 are important for LDV infectivity. Hydrophobic moment analyses of the predicted proteins suggest that VP-2/M and VP-3 both possess three adjacent transmembrane segments and only very short ectodomains (10 and 32 amino acids, respectively) with one and two cysteines, respectively. Inactivation of LDV by dithiothreitol and dissociation of the two envelope proteins were not associated with alterations in LDV's density or sedimentation coefficient.  相似文献   

19.
The env gene of gammaretroviruses encodes a glycoprotein conserved among diverse retroviruses, except for the domains involved in receptor binding. Here we show that pairs of gammaretrovirus envelope proteins (from Friend virus and GALV or xenotropic viruses) assemble into heteromers when coexpressed. This assembly results in a strong inhibition of infectivity. An unrelated envelope protein does not assemble in heteromers with the gammaretrovirus glycoproteins tested and does not affect their infectivity, demonstrating the specificity of the mechanism we describe. We propose that the numerous copies of endogenous retroviral env genes conserved within mammalian genomes act as restriction factors against infectious retroviruses.  相似文献   

20.
Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号